首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The first integrals of motion of the restricted planar circular problem of three bodies are constructed as the formal power series in r1/2, r being the distance of a moving particle from the primary. It is shown that the coefficients of these series are trigonometric polynomials of an angular variable. Some particular solutions have been found in a closed form. The proposed method for constructing the formal integrals can be generalized to a spatial problem of three bodies.  相似文献   

2.
The distinctive feature of the relativistic restricted three-body problem within the c –5 order of accuracy (2 post-Newtonian approximation) is the presence of the gravitational radiation. To simplify the problem the motion of the massive binary components is assumed to be quasi-circular. In terms of time these orbits have linearly changing radii and quadratically changing phase angles. By substituting this motion into the Newtonian-like equations of motion one gets the quasi-Newtonian restricted quasi-circular three-body problem sufficient to take into account the main indirect perturbations caused by the binary radiation terms. Such problem admits the Lagrange-like quasi-libration solutions and rather simple quasi-circular orbits lying at large distance from the binary.  相似文献   

3.
Letn2 mass points with arbitrary masses move circularly on a rotating straight-line central-configuration; i.e. on a particular solution of relative equilibrium of then-body problem. Replacing one of the mass points by a close pair of mass points (with mass conservation) we show that the resultingN-body problem (N=n+1) has solutions, which are periodic in a rotating coordinate system and describe precessing nearlyelliptic motion of the binary and nearlycircular collinear motion of its center of mass and the other bodies; assuming that also the mass ratio of the binary is small.  相似文献   

4.
The two-body problem is a twelfth-order time-invariant dynamic system, and therefore has eleven mutually-independent time-independent integrals, here referred to as motion constants. Some of these motion constants are related to the ten mutually-independent algebraic integrals of the n-body problem, whereas some are particular to the two-body problem. The problem can be decomposed into mass-center and relative-motion subsystems, each being sixth-order and each having five mutually-independent motion constants. This paper presents solutions for the eleventh motion constant, which relates the behavior of the two subsystems. The complete set of mutually-independent motion constants describes the shape of the state-space trajectories. The use of the eleventh motion constant is demonstrated in computing a solution to a two-point boundary-value problem.  相似文献   

5.
The objective of this paper is to find periodic solutions of the circular Sitnikov problem by the multiple scales method which is used to remove the secular terms and find the periodic approximated solutions in closed forms. Comparisons among a numerical solution (NS), the first approximated solution (FA) and the second approximated solution (SA) via multiple scales method are investigated graphically under different initial conditions. We observe that the initial conditions play a vital role in the numerical and approximated solutions behaviour. The obtained motion is periodic, but the difference of its amplitude is directly proportional with the initial conditions. We prove that the obtained motion by the numerical or the second approximated solutions is a regular and periodic, when the infinitesimal body starts its motion from a nearer position to the common center of primaries. Otherwise when the start point distance of motion is far from this center, the numerical solution may not be represent a periodic motion for along time, while the second approximated solution may present a chaotic motion, however it is always periodic all time. But the obtained motion by the first approximated solution is periodic and has regularity in its periodicity all time. Finally we remark that the provided solutions by multiple scales methods reflect the true motion of the Sitnikov restricted three–body problem, and the second approximation has more accuracy than the first approximation. Moreover the solutions of multiple scales technique are more realistic than the numerical solution because there is always a warranty that the motion is periodic all time.  相似文献   

6.
While solutions for bounded orbits about oblate spheroidal planets have been presented before, similar solutions for unbounded motion are scarce. This paper develops solutions for unbounded motion in the equatorial plane of an oblate spheroidal planet, while taking into account only the J 2 harmonic in the gravitational potential. Two cases are distinguished: A pseudo-parabolic motion, obtained for zero total specific energy, and a pseudo-hyperbolic motion, characterized by positive total specific energy. The solutions to the equations of motion are expressed using elliptic integrals. The pseudo-parabolic motion unveils a new orbit, termed herein the fish orbit, which has not been observed thus far in the perturbed two-body problem. The pseudo-hyperbolic solutions show that significant differences exist between the Keplerian flyby and the flyby performed under the the J 2 zonal harmonic. Numerical simulations are used to quantify these differences.  相似文献   

7.
In this article we collect several results related to the classical problem of two-dimensional motion of a particle in the field of a central force proportional to a real power of the distancer. At first we generalize Whittaker's result of the fourteen powers ofr which lead to intergrability with elliptic functions. We enumerate six more general potentials, including Whittaker's fourteen potentials as particular cases (Sections 2 and 3).Next, we study the stability of the circular solutions, which are the singular solutions of the problem, in Whittaker's terminology. The stability index is computed as a function of the exponentn and its properties are explained, especially in terms of bifurcations with other families of ordinary periodic solutions (Sections 4, 5 and 7). In Section 6, the detailed solution of the inverse cube force problem is given in terms of an auxiliary variable which is similar to the eccentric anomaly of the Kepler problem.Finally, it is shown that the stable singular circular solutions of the central force problem generalize to stable singular elliptic solutions of the two-fixed-center problem. The stability and the bifurcations with other families of periodic solutions of the two-fixed-center problem are also described.  相似文献   

8.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   

9.
Two fully regular and universal solutions to the problem of spacecraft relative motion are derived from the Sperling–Burdet (SB) and the Kustaanheimo–Stiefel (KS) regularizations. There are no singularities in the resulting solutions, and their form is not affected by the type of reference orbit (circular, elliptic, parabolic, or hyperbolic). In addition, the solutions to the problem are given in compact tensorial expressions and directly referred to the initial state vector of the leader spacecraft. The SB and KS formulations introduce a fictitious time by means of the Sundman transformation. Because of using an alternative independent variable, the solutions are built based on the theory of asynchronous relative motion. This technique simplifies the required derivations. Closed-form expressions of the partial derivatives of orbital motion with respect to the initial state are provided explicitly. Numerical experiments show that the performance of a given representation of the dynamics depends strongly on the time transformation, whereas it is virtually independent from the choice of variables to parameterize orbital motion. In the circular and elliptic cases, the linear solutions coincide exactly with the results obtained with the Clohessy–Wiltshire and Yamanaka–Ankersen state-transition matrices. Examples of relative orbits about parabolic and hyperbolic reference orbits are also presented. Finally, the theory of asynchronous relative motion provides a simple mechanism to introduce nonlinearities in the solution, improving its accuracy.  相似文献   

10.
The restricted 2+2 body problem is considered. The infinitesimal masses are replaced by triaxial rigid bodies and the equations of motion are derived in Lagrange form. Subsequently, the equilibrium solutions for the rotational and translational motion of the bodies are detected. These solutions are conveniently classified in groups according to the several combinations which are possible between the translational equilibria and the constant orientations of the bodies.  相似文献   

11.
In this paper we study shape-preserving formations of three spacecraft, where the formation keeping forces arise from the electric charges deposed on each craft. Inspired by Lagrange’s 3-body problem, the general conditions that guarantee preservation of the geometric shape of the electrically charged formation are derived. While the classical collinear configuration is a solution to the problem, the equilateral triangle configuration is found to only occur with unbounded relative motion. The three collinear spacecraft problem is analyzed and the possible solutions are categorized based on the spacecraft mass–charge ratio. Precise statements on the number of solutions associated with each category are provided. Finally, a methodology is proposed to study boundedness of the collinear solution that is inspired by past understanding and results for the 3-body problem. Given the initial position and the velocity vectors of each craft along with the charges, analytical solutions are provided describing the resulting relative motion.  相似文献   

12.
We describe a collection of results obtained by numerical integration of orbits in the main problem of artificial satellite theory (theJ 2 problem). The periodic orbits have been classified according to their stability and the Poincaré surfaces of section computed for different values ofJ 2 andH (whereH is thez-component of angular momentum). The problem was scaled down to a fixed value (–1/2) of the energy constant. It is found that the pseudo-circular periodic solution plays a fundamental role. They are the equivalent of the Poincaré first-kind solutions in the three-body problem. The integration of the variational equations shows that these pseudo-circular solutions are stable, except in a very narrow band near the critical inclincation. This results in a sequence of bifurcations near the critical inclination, refining therefore some known results on the critical inclination, for instance by Izsak (1963), Jupp (1975, 1980) and Cushman (1983). We also verify that the double pitchfork bifurcation around the critical inclination exists for large values ofJ 2, as large as |J 2|=0.2. Other secondary (higher-order) bifurcations are also described. The equations of motion were integrated in rotating meridian coordinates.  相似文献   

13.
Based on the ideas of Lyapunov’s method, we construct a family of symmetric periodic solutions of the Hill problem averaged over the motion of a zero-mass point (a satellite). The low eccentricity of the satellite orbit and the sine of its inclination to the plane of motion of the perturbing body are parameters of the family. We compare the analytical solution with numerical solutions of the averaged evolutionary system and the rigorous (nonaveraged) equations of the restricted circular three-body problem.  相似文献   

14.
Previously, we have considered the equations of motion of the three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analysing such a system of equations, we considered the case of small-body motion of negligible mass m 3 around the second of two giant-bodies m 1, m 2 (which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. In the current development, we have derived a key parameter η that determines the character of quasi-circular motion of the small third body m 3 relative to the second body m 2 (planet). Namely, by making several approximations in the equations of motion of the three-body problem, such the system could be reduced to the key governing Riccati-type ordinary differential equations. Under assumptions of R3BP (restricted three-body problem), we additionally note that Riccati-type ODEs above should have the invariant form if the key governing (dimensionless) parameter η remains in the range 10?2 Open image in new window 10?3. Such an amazing fact let us evaluate the forbidden zones for Moon’s orbits in the inner solar system or the zones of distances (between Moon and Planet) for which the motion of small body could be predicted to be unstable according to basic features of the solutions of Riccati-type.  相似文献   

15.
The study of a dynamical system comprises a variety of processes, each one of which requires careful analysis. A fundamental preliminary step is to detect and limit the regions where solutions may exist. In the case of the ring problem of (N+1)-bodies or, otherwise, the regular polygon problem of (N+1) bodies, the existence of a Jacobian-type integral of motion constitutes the key for the investigation of the areas where the motions of the small particle are realized. Based on the aforementioned integral, we present an extended study of the parametric evolution of the regions where 3-D particle motions may exist.  相似文献   

16.
17.
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.  相似文献   

18.
A practical and important problem encountered during the atmospheric re-entry phase is to determine analytical solutions for the space vehicle dynamical equations of motion. The author proposes new solutions for the equations of trajectory and flight-path angle of the space vehicle during the re-entry phase in Earth’s atmosphere. Explicit analytical solutions for the aerodynamic equations of motion can be effectively applied to investigate and control the rocket flight characteristics. Setting the initial conditions for the speed, re-entering flight-path angle, altitude, atmosphere density, lift and drag coefficients, the nonlinear differential equations of motion are linearized by a proper choice of the re-entry range angles. After integration, the solutions are expressed with the Exponential Integral, and Generalized Exponential Integral functions. Theoretical frameworks for proposed solutions as well as, several numerical examples, are presented.  相似文献   

19.
The general theory exposed in the first part of this paper is applied to the following resonances with Jupiter's motion : 3/2, 2/1, 5/2, 3/1, 7/2, 4/1; these are the most relevant resonances for the asteroids. The whole analysis is performed in the framework of the spatial problem of three bodies, both in the circular and in the elliptic case. The results are also compared with the observed distribution of the asteroids.  相似文献   

20.
Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or \(\pi \), the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273–281,  https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun–Neptune–TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号