首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variations in elemental and isotopic ratios of suspended particulate matter (SPM) were investigated in the Guayas River Estuary Ecosystem (GREE) that empties into the Gulf of Guayaquil, Ecuador. Detritus in the system was identified on the basis of extremely high carbon:chlorophyll aratios (>1000). This material had mean δ13C of −26·4±0·3, δ15N of +4·8±0·2, and (C:N)atomicof 14·1±0·9. The isotopic data were comparable to measurements reported for fresh and degrading mangrove leaves, whereas the elemental ratio was comparatively enriched in nitrogen. Isotope measurements of SPM throughout the GREE were more similar to values for riverine material and detritus compared with that for the coastal end-member. Values indicative ofin situproduced algae, sewage and shrimp pond effluent were only found at selected sites. Bacterial bioassays, which were used to document potential sources of dissolved organic matter in the GREE, were isotopically similar to SPM. This correspondence coupled with the relatively low (C:N)aof SPM could be explained by bacterial immobolization of nitrogen onto detritus. Finally, tidal variations of (C:N)aand δ13C at a brackish mangrove site were similar in magnitude to spatial variations encountered throughout the GREE. Based on these results, the authors caution that care must be taken when samples are taken for food-web studies in these systems.  相似文献   

2.
The chemical speciation of dissolved mercury in surface waters of Galveston Bay was determined using the concentrations of mercury-complexing ligands and conditional stability constants of mercury-ligand complexes. Two classes of natural ligands associated with dissolved organic matter were determined by a competitive ligand exchange-solvent solvent extraction (CLE-SSE) method: a strong class (Ls), ranging from 19 to 93 pM with an average conditional stability constant (KHgLs) of 1028, and a weak class (Lw) ranging from 1.4 to 9.8 nM with an average KHgLs of 1023. The range of conditional stability constants between mercury and natural ligands suggested that sulfides and thiolates are important binding sites for dissolved mercury in estuarine waters. A positive correlation between the estuarine distribution of dissolved glutathione and that of mercury-complexing ligands supported this suggestion. Thermodynamic equilibrium modeling using stability constants for HgL, HgClx, Hg(OH)x, and HgCl(OH) and concentrations of each ligand demonstrated that almost all of the dissolved mercury (> 99%) in Galveston Bay was complexed by natural ligands associated with dissolved organic matter. The importance of low concentrations of high-affinity ligands that may originate in the biological system (i.e., glutathione and phytochelatin) suggests that the greater portion of bulk dissolved organic matter may not be important for mercury complexation in estuarine surface waters.  相似文献   

3.
Dissolved Fe, Mn and Al concentrations (dFe, dMn and dAl hereafter) in surface waters and the water column of the Northeast Atlantic and the European continental shelf are reported. Following an episode of enhanced Saharan dust inputs over the Northeast Atlantic Ocean prior and during the cruise in March 1998, surface concentrations were enhanced up to 4 nmol L− 1 dFe, 3 nmol L− 1 dMn and 40 nmol L− 1 dAl and returned to 0.6 nmol L− 1 dFe, 0.5 nmol L− 1 dMn and 10 nmol L− 1 dAl towards the end of the cruise three weeks later. A simple steady state model (MADCOW, [Measures, C.I., Brown, E.T., 1996. Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations. In: Guerzoni. S. and Chester. R. (Eds.), The impact of desert dust across the Mediterranean, Kluwer Academic Publishers, The Netherlands, pp. 301–311.]) was used which relies on surface ocean dAl as a proxy for atmospheric deposition of mineral dust. We estimated dust input at 1.8 g m− 2 yr− 1 (range 1.0–2.9 g m− 2 yr− 1) and fluxes of dFe, dMn and dAl were inferred. Mixed layer steady state residence times for dissolved metals were estimated at 1.3 yr for dFe (range 0.3–2.9 yr) and 1.9 yr for dMn (range 1.0–3.8 yr). The dFe residence time may have been overestimated and it is shown that 0.2–0.4 yr is probably more realistic. Using vertical dFe versus Apparent Oxygen Utilization (AOU) relationships as well as a biogeochemical two end member mixing model, regenerative Fe:C ratios were estimated respectively to be 20 ± 6 and 22 ± 5 μmol Fe:mol C. Combining the atmospheric flux of dFe to the upper water column with the latter Fe:C ratio, a ‘new iron’ supported primary productivity of only 15% (range 7%–56%) was deduced. This would imply that 85% (range 44–93%) of primary productivity could be supported by regenerated dFe. The open ocean surface data suggest that the continental shelf is probably not a major source of dissolved metals to the surface of the adjacent open ocean. Continental shelf concentrations of dMn, dFe, and to a lesser extent dAl, were well correlated with salinity and express mixing of a fresher continental end member with Atlantic Ocean water flowing onto the shelf. This means probably that diffusive benthic fluxes did not play a major role at the time of the cruise.  相似文献   

4.
Nocturnal variations of zooplankton abundance and hydrographic conditions were examined at three locations (centre, north shore and south shore) in Phosphorescent Bay, Puerto Rico, from May 1992 through April 1993. Seven taxa accounted for approximately 96% of the annual mean zooplankton abundance:Oithonaspp. (43·5%),Acartia tonsa(31·5%), copepod nauplii (8·8%),Paracalanusspp.(6·7%), gastropod veligers (2·5%), larvaceans (1·7%) andPseudo-diaptomus cokeri(1·6%). Copepods dominated numerically throughout the year and comprised 94·3% of total zooplankton. Higher abundance of zooplankton (mean±1 SD=252 259±176 797 individuals m−3) was associated with cool water temperatures (24·9–27·4 °C) and dry conditions (0·3–2·9 cm precipitation/month) which prevailed between December and March relative to the period between April and November (warm/wet season) (mean±1 SD=59 773±26 861 individuals m−3), when temperature and precipitation were higher (27·3–30·3 °C, 3·1–20·6 cm month−1). Fluctuations of zooplankton populations, particularly copepods, followed progressive increments in chlorophyllaconcentrations. This abundance pattern was consistent at the three sampling stations. Zooplankton abundance was higher on the north shore of the bay. The taxonomic composition of zooplankton was similar at the sampling stations studied.  相似文献   

5.
This work aimed to evaluate, in vitro, the capability of roots of salt marsh plants to release strong Cu-complexing ligands and to ascertain whether Cu contamination would stimulate ligands' exudation or not. The sea rush Juncus maritimus and the sea-club rush Scirpus maritimus, both from the lower Douro river estuary (NW Portugal), were used. Plants were collected seasonally, four times a year in 2004, during low tide. After sampling, plant roots were washed for removal of adherent particles and immersed for 2 h in a solution that matched salinity (3) and pH (7.5) of the pore water from the same location and spiked with Cu2+ in the range 0–1600 nM to obtain plant exudates. In the final solutions as well as in sediment pore water total dissolved Zn and Cu, Cu-complexing ligand concentrations and the respective conditional stability constants (KCuL) values were determined by voltammetry. This study demonstrated that plants are able to release, in a short period of time, relatively high amounts of strong Cu-complexing ligands (56–265 nmol groot−1), which differed among plants and sampling site but were independent of the season. Cu contamination did not stimulate exudation of Cu-complexing ligands. On the other hand, in media contaminated with Cu both plants accumulated relatively high amounts (29–83%) of the initially dissolved Cu, indicating that they have alternative internal mechanisms for Cu detoxification. Cu exchange between roots and medium (either accumulation in contaminated medium or release in the absence of Cu) was more intense for S. maritimus than for J. maritimus. It was observed that exudate solutions obtained in the absence of added Cu and sediment pore water (the densities of roots observed inside the salt marsh where comparable to those used in the in vitro experiments), displayed similarities in terms of total dissolved metals, Cu-complexing ligands concentrations, values of KCuL (12 < log KCuL < 14), as well as patterns of variation among seasons (only observed for Zn). These results are novel and point out that salt marsh plants may be the source at least partially of the strong organic ligands found in the sediment pore water in shallow marginal areas. The capability of salt marsh plants to release strong organic ligands into the environment, conjugated with their known capacity to oxidize anaerobic sediment around roots, indicate that these plants can play a role in controlling metal speciation in the water/sediment interface.  相似文献   

6.
The effect of benthic oxygenic photosynthesis on sediment-water fluxes of manganese and iron was studied for an intertidal sediment. Undisturbed sediments were incubated at an incident surface irradiance of 250 μE m−2 s−1at 26 °C. Oxygenic photosynthesis was selectively inhibited by adding [3-(3,4-dichloro)-1,1-dimethyl-urea] (DCMU). Benthic fluxes were determined experimentally from the change in manganese and iron concentrations in the overlying water, and were predicted from the pore water concentration gradients at the sediment-water interface assuming molecular diffusion as the transport mechanism. The experimental fluxes of manganese and iron in DCMU-treated cores amounted to −0·84 and −0·59 mmol m−2day−1, respectively, and were directed from the sediment towards the overlying water. In the control cores, showing high rates of benthic oxygenic photosynthesis, the fluxes of manganese and iron were directed towards the sediment, 0·06 and 0·01 mmol m−2day−1, respectively. Mass balances for the 0·1–0·14 cm thick oxic zone, calculated from the experimental fluxes and the predicted fluxes, suggest a minimum areal reoxidation of 0·6 mmol m−2day−1for manganese and of 0·48 mmol m−2day−1for iron in cores showing benthic photosynthesis. The estimated turnover times for dissolved Mn2+and dissolved Fe2+in the oxic surface layer during benthic photosynthesis were 0·8 and 0·25 h, respectively. Sediment oxygen microprofiles and the sediment pH profiles suggest that chemical precipitation and reoxidation dominates the retention of manganese and iron during benthic oxygenic photosynthesis in shallow intertidal sediments.  相似文献   

7.
Estuarine turbidity maxima (ETMs) are sites of intense mineralisation of land-derived particulate organic matter (OM), which occurs under oxic/suboxic oscillating conditions owing to repetitive sedimentation and resuspension cycles at tidal and neap-spring time scales. To investigate the biogeochemical processes involved in OM mineralisation in ETMs, an experimental set up was developed to simulate in vitro oxic/anoxic oscillations in turbid waters and to follow the short timescale changes in oxygen, carbon, nitrogen, and manganese concentration and speciation. We present here the results of a 27-day experiment (three oxic periods and two anoxic periods) with an estuarine fluid mud from the Gironde estuary. Time courses of chemical species throughout the experiment evidenced the occurrence of four distinct characteristic periods with very different properties. Steady oxic conditions were characterised by oxygen consumption rates between 10 and 40 μmol L−1 h−1, dissolved inorganic carbon (DIC) production of 9–12 μmol L−1 h−1, very low NH4+ and Mn2+ concentrations, and constant NO3 production rates (0.4 - 0.7 μmol L−1 h−1) due to coupled ammonification and nitrification. The beginning of anoxic periods (24 h following oxic to anoxic switches) showed DIC production rates of 2.5–8.6 μmol L−1 h−1 and very fast NO3 consumption (5.6–6.3 μmol L−1 h−1) and NH4+ production (1.4–1.5 μmol L−1 h−1). The latter rates were positively correlated to NO3 concentration and were apparently caused by the predominance of denitrification and dissimilatory nitrate reduction to ammonia. Steady anoxic periods were characterised by constant and low NO3 concentrations and DIC and NH4+ productions of less than 1.3 and 0.1 μmol L−1 h−1, respectively. Mn2+ and CH4 were produced at constant rates (respectively 0.3 and 0.015 μmol L−1 h−1) throughout the whole anoxic periods and in the presence of nitrate. Finally, reoxidation periods (24–36 h following anoxic to oxic switches) showed rapid NH4+ and Mn2+ decreases to zero (1.6 and 0.8–2 μmol L−1 h−1, respectively) and very fast NO3 production (3 μmol L−1 h−1). This NO3 production, together with marked transient peaks of dissolved organic carbon a few hours after anoxic to oxic switches, suggested that particulate OM mineralisation was enhanced during these transient reoxidation periods. An analysis based on C and N mass balance suggested that redox oscillation on short time scales (day to week) enhanced OM mineralisation relative to both steady oxic and steady anoxic conditions, making ETMs efficient biogeochemical reactors for the mineralisation of refractory terrestrial OM at the land-sea interface.  相似文献   

8.
The relation between trophic regime and phytoplankton composition and function in oceanic systems is well accepted in oceanography. However, the relative dynamics and carbon cycling contributions of different phytoplankton groups across gradients of ocean richness are not fully understood. In this work we investigated phytoplankton dynamics along two transects from the NW African coastal upwelling to open-ocean waters of the north Atlantic subtropical gyre. We adopted a pigment-based approach to characterize community structure and to quantify group-specific growth and grazing rates and associated carbon fluxes. Changes in pigment cell concentration during the incubation experiments due to photoadaptation were corrected to obtain reliable rates. The oceanic region was dominated by Prochlorococcus (PRO) (45±7% of total chlorophyll a) while diatoms dominated in upwelling waters (40±37%). Phytoplankton grew faster (μ=0.78±0.26 d−1) and free of nutrient limitation (μ/μn=0.98±0.42) in the coastal upwelling region, with all groups growing at similar rates. In oceanic waters, the growth rate of bulk phytoplankton was lower (μ=0.52±0.16 d−1) and nutrient limited (μ/μn=0.68±0.19 d−1). Diatoms (0.80±0.39 d−1) and Synechococcus (SYN) (0.72±0.25 d−1) grew faster than Prymnesiophyceae (PRYMN) (0.62±0.26 d−1) and PRO (0.46±0.18 d−1). The growth rates of PRO and SYN were moderately nutrient limited (μ/μn=0.81 and 0.91, respectively), while the limitation for diatoms (μ/μn=0.71) and PRYMN (μ/μn=0.37) was more severe. Microzooplankton grazing rate was higher in upwelling (0.68±0.32 d−1) than in oceanic waters (0.37±0.19 d−1), but represented the main loss pathway for phytoplankton in both systems (m/μ=0.90±0.32 and 0.69±0.24, respectively). Carbon flux through phytoplankton, produced and grazed, increased from offshore to coastal (∼2 to ∼200 μg C L−1 d−1), with diatoms dominating the flux in the upwelling region (52%) while PRYMN (40%) and PRO (30%) dominated in the open ocean.  相似文献   

9.
During a cruise of r/v ‘Oceania’ in May 2006, seven vertical dissolved organic carbon (DOC) concentration profiles were produced against a background of CTD, chlorophyll a (chl a) and phaeopigment concentration profiles. The results indicate distinct vertical and spatial DOC fluctuations, ranging from 248 ± 7 μmol C dm−3 at 70 m depth at the westernmost station G/06 to 398 ± 5 μmol C dm−3 at 5 m depth at station A/06 in the western Gulf of Gdańsk. DOC concentrations were the highest at 10 m depth, where phytoplankton activity was relatively intensive, as reflected by the active chl a concentration distribution. DOC concentrations decreased towards the sea bottom.  相似文献   

10.
The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates. Using 7Be and 234ThXS, the sediment-mixing coefficient (Db) was 4.3 ± 1.8 cm2 y−1, a value that lies at the lower limit for marine environments, indicating that mixing was not important in these sediments at this time. Sediment accumulation rates (Sa), estimated using 137Cs and 210PbXS, were 0.16 ± 0.02 g cm−2 y−1. The supply rate of organic carbon to the sediment-water interface was 30 ± 3.9 mmol C m−2 d−1, of which ∼10% or 2.9 ± 0.44 mmol C m−2 d−1was lost from the system through burial below the 1-cm thick surface mixed layer. Measured fluxes of O2 were 26 ± 3.8 mmol m−2 d−1 and equated to a carbon oxidation rate of 20 ± 3.3 mmol C m−2 d−1, which is an upper limit due to the potential for oxidation of additional reduced species. Using organic carbon gradients in the surface mixed layer, carbon oxidation was estimated at 2.6 ± 1.1 mmol C m−2 d−1. Independent estimates made using pore water concentration gradients of ammonium and C:N stoichiometry, equaled 2.8 ± 0.46 mmol C m−2 d−1. The flux of DOC out of the sediments (DOCefflux) was 5.6 ± 1.3 mmol C m−2 d−1. In general, while mass balance was achieved indicating the sediments were at steady state during this time, changes in environmental conditions within the bay and the surrounding area, mean this conclusion might not always hold. These results show that the majority of carbon oxidation occurred at the sediment-water interface, via O2 reduction. This likely results from the high frequency of sediment resuspension events combined with the shallow sediment mixing zone, leaving anaerobic oxidants responsible for only ∼10–15% of the carbon oxidized in these sediments.  相似文献   

11.
An interaction of dissolved natural organic matter (DNOM) with copper ions in the water column of the stratified Krka River estuary (Croatia) was studied. The experimental methodology was based on the differential pulse anodic stripping voltammetric (DPASV) determination of labile copper species by titrating the sample using increments of copper additions uniformly distributed on the logarithmic scale. A classical at-equilibrium approach (determination of copper complexing capacity, CuCC) and a kinetic approach (tracing of equilibrium reconstitution) of copper complexation were considered and compared. A model of discrete distribution of organic ligands forming inert copper complexes was applied. For both approaches, a home-written fitting program was used for the determination of apparent stability constants (Kiequ), total ligands concentration (LiT) and association/dissociation rate constants (ki1,ki- 1).A non-conservative behaviour of dissolved organic matter (DOC) and total copper concentration in a water column was registered. An enhanced biological activity at the freshwater–seawater interface (FSI) triggered an increase of total copper concentration and total ligand concentration in this water layer. The copper complexation in fresh water of Krka River was characterised by one type of binding ligands, while in most of the estuarine and marine samples two classes of ligands were identified. The distribution of apparent stability constants (log K1equ: 11.2–13.0, log K2equ:8.8–10.0) showed increasing trend towards higher salinities, indicating stronger copper complexation by autochthonous seawater organic matter.Copper complexation parameters (ligand concentrations and apparent stability constants) obtained by at-equilibrium model are in very good accordance with those of kinetic model. Calculated association rate constants (k11:6.1–20 × 103 (M s)− 1, k21: 1.3–6.3 × 103 (M s)− 1) indicate that copper complexation by DNOM takes place relatively slowly. The time needed to achieve a new pseudo-equilibrium induced by an increase of copper concentration (which is common for Krka River estuary during summer period due to the nautical traffic), is estimated to be from 2 to 4 h.It is found that in such oligotrophic environment (dissolved organic carbon content under 83 µMC, i.e. 1 mgCL− 1) an increase of the total copper concentration above 12 nM could enhance a free copper concentration exceeding the level considered as potentially toxic for microorganisms (10 pM).  相似文献   

12.
On voyages in the Iceland Basin in 2007 and 2009, we observed low (ca. 0.1 nM) total dissolved iron concentrations [dFe] in surface waters (<150 m), which increased with depth to ca. 0.2–0.9 nM. The surface water [dFe] was low due to low atmospheric Fe inputs combined with biological uptake, with Fe regeneration from microbial degradation of settling biogenic particles supplying dFe at depth. The organic ligand concentrations [LT] in the surface waters ranged between 0.4 and 0.5 nM, with conditional stability constants (log KFeL) between 22.6 and 22.7. Furthermore, [LT] was in excess of [dFe] throughout the water column, and dFe was therefore largely complexed by organic ligands (>99%). The ratio of [LT]/[dFe] was used to analyse trends in Fe speciation. Enhanced and variable [LT]/[dFe] ratios ranging between 1.6 and 5.8 were observed in surface waters; the ratio decreased with depth to a more constant [LT]/[dFe] ratio in deep waters. In the Iceland Basin and Rockall Trough, enhanced [LT]/[dFe] ratios in surface waters resulted from decreases in [dFe], likely reflecting the conditions of Fe limitation of the phytoplankton community in the surface waters of the Iceland Basin and the high productivity in the Rockall Trough.Below the surface mixed layer, the observed increase in [dFe] resulted in a decrease of the [LT]/[dFe] ratios (1.2–2.6) with depth. This indicated that the Fe binding ligand sites became occupied and even almost saturated at enhanced [dFe] in the deeper waters. Furthermore, our results showed a quasi-steady state in deep waters between dissolved organic Fe ligands and dFe, reflecting a balance between Fe removal by scavenging and Fe supply by remineralisation of biogenic particles with stabilisation through ligands.  相似文献   

13.
Profiles of the radioisotopes 210Pb and 137Cs were determined in 15 sediment cores collected from Sagami Bay, Japan. The activities of 210Pbex (unsupported) in core top sediments increased with water depth from 25 dpm g−1 on the upper continental slope off the mouth of Tokyo Bay to an average of 283 dpm g−1 at the deep-sea station SB. The high 210Pb trapping efficiency of settling particles expected from the results of the sediment trap experiment near the SB site suggests that effective 210Pb enrichment in surface sediments may occur during resuspension and lateral transportation of particles via the benthic nepheloid layer on the continental slope. In several cores, 137Cs profiles showed an increase, a distinct peak, and then a decrease to an undetectable level downcore. These profiles can be compared with the temporal change of bomb-produced 137Cs fallout.The mean sedimentation rates estimated by the 210Pbex inventory method, rather than using 210Pbex profiles, ranged from 0.06 g cm−2 y−1 to 0.14 g cm−2 y−1. The average value of the rates in SB cores was calculated to be 0.11 g cm−2 y−1, which was similar to that calculated under the assumption that the age of the 137Cs peak corresponds to its maximum fallout year in 1963.Although 137Cs inventories represented one tenth of the anthropogenic fallout of 137Cs until 1997, they correlated with the increase in 210Pbex inventory. This suggests that the scavenging of refractory 137Cs as well as 210Pb by settling particles in the water column can lead to the formation of a time marker layer even in deep-sea sediment core, such as at the SB site.  相似文献   

14.
Radionuclides (i.e., 7Be and 210Pb) can be used to trace particle and sediment dynamics and to quantify coastal oceanic processes with time scales ranging from a few days to a hundred years. Here, we study the settling dynamics of suspended particles and the implication by sedimentary heavy metals in the Wenjiao/Wenchang River and Wanquan River estuaries through the measurement of the particulate 7Be and 210Pb nuclides. Activity in the particulate phase had a range of 2.1–54.5 and 4.6–67.9 Bq kg−1 for 7Be and excess 210Pb (210Pbxs), respectively, in the Wenjiao/Wenchang River estuary. In the Wanquan River estuary, activity is in the range of 1.2–43.5 Bq kg−1 for 7Be and 6.2–194.5 Bq kg−1 for 210Pbxs. At the same time, activity in the dissolved phase had a range of 0.46–1.26 and 0.30–1.17 Bq m−3 for 7Be and 210Pb, respectively, in the Wenjiao/Wenchang River estuary; ranges of 0.10–2.31 and 0.09–1.87 Bq m−3 for 7Be and 210Pb, respectively, were observed in the Wanquan River estuary. The distribution coefficients (Kd) for the two nuclides decreased within increased in suspended particle matters (SPM) concentration and/or salinity in Wanquan River estuary. The residence times of particulate 7Be and 210Pbxs had ranges of 0.4–1.6 and 1.65–5.15 days, respectively, in the Wenjiao/Wenchang River estuary; and ranges of 0.02–3.2 and 0.61–4.44 days, respectively in the Wanquan River estuary. All residence times for the two nuclides increased in the seaward direction. In the Wenjiao/Wenchang River estuary, we found that 11.8–21.0% of Cu, 3.0–9.0% of Zn and 43.2–69.9% for Cd is removed from the water column and deposited into the estuary, and 24.2–34.8% for Cu, 7.2–23.8% for Zn, and 70.0–82.5% for Cd in the Wanquan River estuary, respectively.  相似文献   

15.
The production and biomass of microphytobenthos in a Mediterranean mussel farm was studied during 1991–92. Gross and net microphytobenthic production and respiration were calculated from oxygen fluxes in transparent and black bell jars at two stations; sediments under a mussel table and reference sediments, both located at 5 m depth. Net oxygen fluxes were mainly negative under the mussel tables (average −19·5 mg O2 m−2 h−1, CV=132%), and microphytobenthos production could not meet the sediment oxygen demand; in the reference sediments, microphytobenthos production was responsible for net oxygen production (average +13·0 mg O2 m−2 h−1, CV=118%). Benthic respiration rates were, on average, 47·3 mg O2 m−2 h−1(CV=82%) under the tables and 27·7 mg O2 m−2 h−1(CV=45%) in reference sediments. Aerobic respiration could remineralize less than 2% of the biodeposited carbon under the tables, implying that a large amount of organic material is accumulating under the tables, and that most of the degradation will be anaerobic. Gross microbenthic production showed sharp changes between 1991 and 1992 under the mussel tables and for reference sediments (averages 20·98 mg O2 m−2 h−1, CV=135% and 33 mg O2 m−2 h−1, CV=48%, respectively). Despite the negative oxygen balance in the sediments under the tables, microphytobenthos was more productive than phytoplankton in bottom waters. Per unit area, phytoplankton was more productive than microphytobenthos at both stations, especially in the area of the mussel tables, where phytoplanktonic production was enhanced by the excretion products of mussels. Microphytobenthos was composed mainly of diatoms in the sediments under the tables, while in reference sediments, the population was more diverse, with algae containing chlorophyllbalso present. Chlorophyllaconcentration in sediments under the tables was 207 mg m−2(CV=73%) and 95 mg m−2(CV=28%) in reference sediments; the stock of plant pigments was increased under the tables by biodeposition. Microphytobenthos constitutes a compartment with an important contribution in biomass, but also in oxygen production.  相似文献   

16.
Two independent voltammetric techniques, differential pulse cathodic stripping voltammetry (DPCSV) and differential pulse anodic stripping voltammetry (DPASV), determined that 95% of the dissolved zinc is organically complexed at two depths (60 and 150 m) within the surface euphotic zone at an open ocean station in the Northeast Pacific. Average values for the concentrations of the natural zinc-complexing organic ligands (CL) obtained from duplicate determinations at these two depths by DPCSV versus DPASV are in excellent agreement: 1.60 ± 0.01 versus 1.76 ± 0.03 nM at 60 m, and 2.14 (n=1) versus 2.22 ± 0.06 nM at 150 m. Average values for the conditional stability constants (with respect to free Zn2+) of the natural zinc-organic complexes (log KZnL) from duplicate determinations at both depths by DPCSV versus DPASV are 10.3 ± 0.2 versus 11.2 ± 0.2. Additional research is required to assess the significance of the difference in the conditional stability constants determined by these two techniques. These results confirm recent observations that strong zinc complexes formed with an organic ligand class existing at nanomolar concentrations dominates zinc speciation in the North Pacific.  相似文献   

17.
Cadmium and copper in the dissolved and particulate phase and in zooplankton were determined in the Bahía Blanca estuary during six surveys from March to December 2005. Temperature, pH, salinity, dissolved oxygen, suspended particulate matter, particulate organic matter and chlorophyll-a were also considered. Dissolved Cd was below the detection limit (0.2 μg L−1) for almost the entire study period whereas Cu concentrations (0.5–2.4 μg L−1) indicated a continuous dissolved Cu input. Particulate Cd concentrations ranged from below the detection limit (<0.01) to 28.6 μg g−1 d.w. while particulate Cu ranged from below the detection limit (<0.04) to 53.5 μg g−1 d.w. Cd in mesozooplankton ranged from below the detection limit (<0.01) to 37.4 μg g−1 d.w. Some of the Cd levels were higher than those reported for other aquatic ecosystems. Cu in the mesozooplankton ranged from 1.3 to 89.3 μg g−1 d.w., values which were within the reported values or higher than other studies. The log of the partition coefficients (log (Kd)) of Cd was 0.04, while log (Kd) for Cu ranged from −0.39 to 2.79. These values were lower than both those calculated for other estuaries and the typical coefficients for marine environments. The log of the bioconcentration factor (log BCF) of Cd was 1.78, indicating that Cd concentration was higher in the zooplankton than in the dissolved phase. Log BCF of Cu ranged from 1.15 to 3. The logs of the biomagnification factors (log BMF) of Cd were low, with a range between −3.45 and 2.21 and those for Cu ranged from −0.1 to 3.35. Positive values indicate biomagnification while negative values indicate biodiminution. In general, no significant dissolved Cd concentration appeared to be present in the Bahía Blanca estuary and Cu values did not indicate a critical environmental status. The particulate phase seemed to be the major carrier for Cd and Cu and TPCu values were within the normal values for an anthropogenically stressed estuary but not for a strongly polluted system. This fraction was the most important metal source for the mesozooplankton. Moreover, the highest metal concentrations were in the mesozooplankton since most of the bioconcentration and biomagnification factors were positive, especially for Cu.  相似文献   

18.
The chemical speciation of Cu and Zn was investigated by voltammetric titration methods in the surface waters (10 m) of the western Black Sea during an Istanbul–Sevastopol cruise conducted in November 1998. Supporting parameters (temperature (T), salinity (S), pH, alkalinity (Alk), suspended particulate matter (SPM) and dissolved and particulate 234Th) were obtained in order to distinguish hydrographic features against involvement of the metals in biogeochemical processes. In the Turkish continental slope region, the cruise track intersected a narrow vein of colder water originating on the western shelf. The core of this cold water vein was characterised by a relatively low salinity, higher specific alkalinity and higher metal (especially Cu) and metal-binding ligand concentrations.A very large portion of Cu (93–99.8%) and Zn (82–97%) was organically complexed. The degree of complexation was highest in shelf waters and lowest in the central gyre. Titration data for Cu were modelled by two classes of organic binding ligands characterised by (CL1=3–12 nM, log K1′=13.1–13.9) and (CL2=20–70 nM, log K2′=9.4–11.2). These ligands occurred mainly in the ‘dissolved’ phase, as defined by 0.4-μm filtration. The stronger Cu-binding ligand seemed to be produced in situ in response to Cu concentration, whereas the weaker Cu-binding ligand appeared to be derived from terrestrial sources and/or reducing shelf sediments. Titration results for Zn were generally represented by one class of ligands (CL1=8–23 nM, log K1′=9.4–10.2), which were almost uniformly distributed between the ‘dissolved’ (78±8%) and the particulate phase (22±8%). The concentration of these strong Zn-binding ligands showed a very good correlation with SPM (r2=0.64), which improved when the dissolved ligands alone were considered (r2=0.78). It is hypothesised that these ligands were produced in situ by the bacterial breakdown of particulate organic matter.  相似文献   

19.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

20.
This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical water properties in the cage culture area of Sepanggar Bay, Sabah, Malaysia based on field measurement conducted during July 2005 to January 2006 to study the spatial and temporal variation in phytoplankton communities and physico-chemical water properties of the bay. Phytoplankton samples and water parameters data were collected from five different stations located inside the bay during Southwest, Interseasonal and Northeast monsoons. Forty phytoplankton genera, representatives of 23 families, were found in the study area with a mean abundance of 1.55 ± 1.19 × 106 cells L−1. Most of these genera belong to diatoms (82.17%), Dinoflagellates (17.55%) and cyanobacteria (0.29%). Three genera were found to be dominant (>10%) in phytoplankton abundance and these were Coscinodiscus spp. (36.38%), Chaetoceros spp (17.65%) and Bacteriastrum spp. (10.98%). The most dominant genus was Coscinodiscus spp. which showed high abundance during all monsoons and stations (except Station 3). Among the seven environmental parameters tested in this study, water temperature, pH and suspended sediment concentration were found to be significantly different between monsoons. On the other hand, no significant differences were found between stations for the studied physico-chemical parameters. A clear differences in phytoplankton densities were observed between monsoons and stations with higher mean abundances during interseasonal monsoon (2.40 ± 1.37 × 106 cells L−1) and at station five (2.05 ± 0.74 × 106 cells L−1), respectively. Conversely, the diversity indices, both Shannon–Wiener (H)(H) and Pielou (J)(J), showed no significant difference throughout stations and monsoons (except (H)(H) for monsoons). Analysis of similarity (ANOSIM) results demonstrated temporal differences in phytoplankton community structure with highly diverse phytoplankton assemblage. Through cluster analysis five groups of phytoplankton were attained (at 40% similarity level) though no marked separation of the taxonomic classes pointed towards the constant pattern of the phytoplankton assemblage in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号