首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FROST  RONALD 《Journal of Petrology》1975,16(2):272-313
The 2 km wide contact aureole produced from serpentinite bythe intrusion of the Mount Stuart Batholith into the IngallsComplex at Paddy-Go-Easy Pass contains the following ultramaficassemblages, in order of increasing grade: serpentine-forsterite-diopside,serpentine-forsterite-tremolite, forsterite-talc, forsterite-anthophyllite,forsterite-enstatite-anthophyllite, forsterite-enstatite-chlorite,forsterite-enstatite-spinel. Associated metarodingites displayfive metamorphic zones, the diagnostic assemblages of whichare, in increasing grade: grossular-idocrase-chlorite, grossular-diopside-chlorite,epidote-diopside-chlorite, epidotediopside-spinel, plagioclase-grossular-diopside.Mafic hornfels in the aureole contains no orthopyroxene, indicatingthat the conditions of pyroxene hornfels facies were not reached. The breakdown of chlorite is best displayed in aluminous blackwallreaction zones around mafic inclusions in the peridotite. Attemperatures above those of the anthophyllite-out isograd, butwithin the field of forsterite+tremolite, these chlorite-richrocks react to form the assemblage: forsterite-enstatite-spinel.Calculations show that cordierite did not form as a result ofchlorite breakdown in the natural system because impurities,such as iron and chromium, displaced the equilibrium: forsterite+cordierite= enstatite+spinel to much lower pressures than the three kilobarsfound in the pure system. The primary chromite of the peridotite has been altered to chrome-magnetitein the serpentinite. This alteration seems to be isochemicalover the whole rock, as true chromite, formed by metamorphism,occurs at grades above that of the forsterite-enstatite-anthophylliteassemblage. Calcic amphibole in high-grade metaperidotite is tremolite,even in the presence of aluminous chromite, whereas that inmetamorphosed blackwall rock grades from tremolite into hornblende.The pattern of substitution appears to be: Mg2Si3rlhar2;(Na,K)(AlVI)2(AlIV)3.  相似文献   

2.
Contact metamorphism of siliceous dolomite in the southern partof the metamorphic aureole of the Alta stock (Utah, USA) producedthe prograde isograd sequence: talc (Tc), tremolite (Tr), forsterite(Fo), and periclase (Per). Calcite (Cc)–dolomite (Do)geothermometry and phase equilibria define a general progradeT–X(CO2) path of decreasing X(CO2) with rising temperaturefor the dolomite. High-variance assemblages typify the aureole.Per + Cc and Fo + Cc + Do characterize the inner aureole (Perand Fo zones), and Tr + Do + Cc and Tc + Do + Cc are widespreadin the outer aureole (Tr and Tc zones). Low-variance assemblagesare rare and the thickness of reaction zones (coexisting reactantand product minerals) at the isogradic reaction fronts are narrow(tens of metres or less). The mineral assemblages, calculatedprogress of isograd reactions, and the prograde T–X(CO2)path all indicate that massive dolomite was infiltrated by significantfluxes of water-rich fluids during prograde metamorphism, andthat the fluid flow was down-temperature and laterally awayfrom the igneous contact. Fluid infiltration continued throughat least the initial retrograde cooling of the periclase zone.Down-T fluid flow is also consistent with the results of Cc–Dogeothermometry and patterns of 18O depletion in this area. Theclose spatial association of reacted and unreacted chert nodulesin both the tremolite and talc zones plus the formation of tremoliteby two reactions indicate that the outer aureole varied in X(CO2),and imply that fluid flow in the outer aureole was heterogeneous.The occurrence of dolomite-rich and periclase (brucite)-absent,high-  相似文献   

3.
GREEN  D. H. 《Journal of Petrology》1964,5(1):134-188
The Lizard peridotite produced a high-temperature metamorphicaureole during diapirie emplacement in a period of amphibolitefacies regional metamorphism. The peridotite preserves a coarse-grainedprimary core within a cataclastic, finely foliated and recrystallizedmarginal shell. Chemical analyses demonstrate the constancyof rock composition in the primary and recrystallized mineralassemblages. The primary mineral assemblage of the peridotiteconsists of olivine (Fo89), aluminous enstatite, aluminous diopside,and green aluminous spinel. In contrast the mineral assemblageon recrystallization is olivine, enstatite (normal Al2O3 content),diopside (normal Al2O3 content), plagioclase, and brown chromite.A third assemblage of olivine, pargasite, and brown chromianspinel is developed locally from the plagioclase-bearing assemblage,particularly in contact areas. Major and trace element analyses of twenty minerals and eightrocks are given. These are compared in detail with peridotitesand minerals occurring as accumulates from basaltic magma, asperidotite nodules in basalts and as ’intrusive' peridotitesin orogenic areas. It is concluded that the primary mineralsof the Lizard peridotite have not crystallized and accumulatedfrom a basaltic magma but have crystallized in a similar environmentto that of peridotite nodules in basalts. It is further concludedthat the cause of the differences between the primary and recrystallizedassemblages of the peridotite is primarily a difference in loadpressure at crystallization. In particular the high aluminacontent of both enstatite and diopside and the coexistence ofpyroxenes+ aluminous spinel instead of olivine+anorthite areconsidered to be a direct consequence of the high load pressureat the initial crystallization of the peridotite.  相似文献   

4.
Boulders of the assemblage ruby—sapphire corundum, chromianmuscovite, margarite, tourmaline (chromian chlorite, Zn—Mnchromite and Mn—Ti magnetite) occur in glacial moraineand rivers of north Westland, South Island of New Zealand. Thelocation, Cr-rich composition of the boulders and the presenceof rare serpentinite rinds indicate that they are derived fromultramafic rocks (Pounamu Ultramafics) that occur within AlpineSchist of the Southern Alps. The largest sample is progressivelyzoned outwards from a corundum—margarite core, throughan intermediate zone of Cr-muscovite, to an outer zone of Cr-chloritethat is in contact with serpentinite. Most finds consist oferosion-resistant corundum-rich cores. In the corundum, Cr2O3content ranges from 0.5 to 13%, with red coloration becomingmore intense with increasing Cr. In addition to the dominantCr3+ Al3+ substitution, those of (Fe, V)3+ Cr3+ and (Ti4++Fe2+) 2Cr3+ result in spectacular colour zoning from colourlessto deep ruby red-carmine and pale blue to dark blue—violet.Corundum has grown by replacement of the micaceous matrix thatconsists of chromian muscovite (0.10–4.10% Cr2O3) andchromian margarite (0.46–1.20% Cr2O3). Both micas containa significant paragonite component (up to 21.5% in muscoviteand up to 40.8% in margarite). Late phase muscovite is Ba richwith up to 4.77% BaO, and margarite has up to 0.66% SrO. Tourmalineoccurs as veins, vein outgrowths and larger poikilitic crystalsthat replace the mica matrix. Chromium content ranges between0.82 and 3.6% Cr2O3. High bulk rock Al (up to 78% Al2O3), K,Ca, Cr and Na, and low Si (14.5–23.1% SiO2), suggest thatthe corundum—Cr-silicate rocks are the products of extrememetasomatic alteration of quartzofeldspathic schist enclavesin serpentinite. Isocon analysis indicates that conversion ofthe schist to the micaceous matrix of the corundum rocks involvesconservation of Ca, Al, K, volatiles and Sr, a mass loss of59% and a volume reduction of 69% consequent on removal of 70–80%Si and all other elements (most >80%), with enrichment ofbetween 900 and 1800% Cr. The formation of corundum from themica matrix involved a further mass—volume reduction anddecrements in Si, Ca, K, volatiles and Sr from reaction sites.Concentric mineral zonation in single rock samples and zoning—replacementin minerals, e.g. Cr in corundum and chromite, Ti, Fe2+ in corundum,Ba in muscovite, Sr in margarite, and Mn and Zn in chromiteand magnetite, imply element redistribution during metasomatism.Experimental reaction between quartzofeldspathic schist andserpentinite at 450C and 2 kbar produced reaction sequencescontaining newly formed Ca-plagioclase—phlogopitic micachloriteand muscovite—chlorite that in terms of composition areanalogous with the observed (corundum—margarite)—muscovite—chloritezonation. The temperature of metamorphism of garnet zone rocks(45020C) that contain the corundum—Cr-silicate rocksis well below that of the breakdown of muscovite and margariteto form corundum and indicates the importance of fluid composition,particularly the cation—hydrogen variables aCa2+/H+, aK+/H+and aS1O2. Introduction of boron into the schist (from serpentinite),and boron released from the breakdown of original tourmalinein the schist, resulted in tourmaline veining and reaction ofthe mica matrix to form tourmaline that invoved both a massand volume increase and addition of Fe, Mg together with B. KEY WORDS: corundum—Cr-silicate rocks; metasomatism; New Zealand; Southern Alps *Corresponding author.  相似文献   

5.
The aluminous enclaves occur in gedrite-cordierite-gneissesof the Middle Ordovician Ammonoosuc Volcanics, and are composedof combinations of the aluminous minerals sillimanite (Sill),kyanite, corundum (Cor), staurolite (St), sapphirine (Sa), andspinel (Sp), which are set in a matrix of cordierite (Crd) orplagioclase (Plag). Generally, where plagioclase is present,both it and the aluminous minerals are separated from gedrite(Ged) and rare hornblende (Hbl) by cordierite. The enclavesarc interpreted to have formed near the peak of Acadian (Devonian)metamorphism at sillimanite-staurolite-muscovite grade by reactionsthat were encountered during the pressure decrease which accompaniedthe rise of gneiss domes in the region. The enclaves are divided into two main types: (1) enclaves ofcordierite surrounding aluminous minerals; and (2) enclavesof cordierite and plagioclase surrounding aluminuous minerals.Sapphirine grains contain between 9?2 and 9?3 Al atoms per formulacalculated to 14 cations. Staurolites from the enclaves areMg-rich and have (Fe2++ Mn)/(Fe2++Mn+Mg) ratios of 0-59–0?64. The textures and mineralogy of the enclaves suggest that theserocks originally consisted of Ged+Sill?Qz?Hbl?Sp?Plag. Theseminerals reacted to form Crd+Aluminous Minerals?Plag. The mineralogyof both main types of enclaves can be explained by two analogoussets of continuous Fe-Mg reactions:The structure of the enclavessuggests that the mineral growth by the above reactions wasdiffusion controlled, which would have resulted from oversteppingthe above reactions (i.e. the P change exceeded the reactionrate). Therefore, chemical potential gradients (relative mobilityof diffusing components) between gedrite and sillimanite controlledthe location of mineral growth. The Fe-Mg ratio of the bulkcomposition and the proportions of non-Fe-Mg minerals (quartzand sillimanite) appear to determine which continuous Fe-Mgreactions were encountered. Examples of mineral sequences in the cordierite enclaves are:Sill (core)/St+Crd/Ged (matrix); Cor+Crd (core)/Ged (matrix),and Sill (core)/St+Crd/Sa+Crd/Ged (matrix). Examples of themineral sequences in the cordierite-plagioclase enclaves are:Sill (core)/St+Plag/Plag+Crd/Hbl+Ged (matrix); Cor+Plag (core)/St+Plag/Sa+Plag/Ged+ Hbl (matrix); and St+Plag (core)/Plag+Crd/Ged+Hbl (matrix). P–µFeMg–1 diagrams proved to be an importanttool for understanding and illustrating the development of theenclaves. These diagrams allow one to view simultaneously allthe discontinuous and continuous Fe-Mg reactions along a P–µH2O(or T) rock path. With this information it is possible to determinequalitatively which reactions and what sequence of reactionsmight be encountered by bulk compositions with variable Fe-Mgratios and modal proportions of phases.  相似文献   

6.
The central portion of the system MgO–Al2O3–SiO2has been studied with the aim of determining the range of solidsolution, as well as the stability limits of the various structuralstates of the ternary compound cordierite. The previously suggestedlimited solid solution between cordierite of the composition2MgO? 2Al2O3? 5SiO2 (2: 2: 5) and SiO2 is now believed to existonly metastably. Between 800? and 1,300? C the composition ofcordierite was found to be invariably 2MgO. 2Al2O3 5SiO2. Above1,300?C, however, there is evidence for the existence of limitedsolid solution in cordierite (2: 2: 5) toward a theoreticalcompound ‘Mg-beryl’ (3: 1: 6). The existence ofcordierite solid solution at liquidus temperatures has an importantbearing on the melting relations of many compositions withinthe system. Because of this solid solution the courses of crystallizationof melts consisting of normative cordierite (2: 2: 5) and smallamounts of MgSiO3, for example, have to follow parts of theboundary curve between the cordierite and spinel fields withthese two phases coprecipitating over a limited range of temperatures.The dividing line between compositions which complete theircrystallization at the ternary eutectic forsterite+protoenstatite+cordierite+liquid,1,364? ?3? C, and those which complete their crystallizationat the ternary eutectic protoenstatite +cordierite+tridymite+liquid,1, 355??3? C was formerly considered to be the join MgSiO3-cordierite(2: 2: 5). Because of solid solution in cordierite coexistingwith liquid this dividing line is displaced slightly in thedirection toward more siliceous bulk compositions. Furthermore,the temperature maximum along the boundary curve cordierite+protoenstatite+liquid cannot lie at the intersection of this boundary curvewith the join MgSiO3–2: 2: 5, but with the tie line MgSiO3-cordieritess.The position of this temperature maximum thus moves closer tothe ternary eutectic protoenstatite+cordierite+tridymite+liquid.Temperatures and compositions of some of the invariant pointsin the system have been redeter-mined.  相似文献   

7.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

8.
Outside the Bergell tonalite contact aureole, ophicarbonate rocks consist of blocks of antigorite schist embedded in veins of calcite ± tremolite. An antigorite schistosity predates some of these calcite veins. Mono- and bimineralic assemblages occur in reaction zones associated with the veins. Within the aureole, the ophicarbonate veining becomes less distinct and polymineralic assemblages become more frequent. A regular sequence of isobaric univariant assemblages is found, separated by isograds corresponding to isobaric invariant assemblages. In order of increasing grade the invariant assemblages are: antigorite+diopside+olivine+tremolite+calcite antigorite+dolomite+olivine+tremolite+calcite antigorite+olivine+talc+magnesite antigorite+dolomite+olivine+tremolite+talc These assemblages match a previously derived topology in P-T-XCO2 space for the system CaO-MgO-SiO2-H2O-CO2; the field sequence can be used to adjust the relative locations of calculated invariant points with respect to temperature. Isobaric univariant and invariant assemblages are plotted along a profile map to permit direct comparison with the phase diagram.It is inferred that, during the formation of the ophicarbonate veins, calcite precipitated from fluid introduced into the serpentinite. During contact metamorphism, however, the compositions of pore fluids evolved by reaction in the ophicarbonate rocks were largely buffered by the solid phases. This control occurred on a small scale, because there are local variations in the buffering solid assemblages within a centimeter range.  相似文献   

9.
The King Island Scheelite Mine lies in the contact aureole of a granodiorite stock. Its open cut and numerous drill cores expose a contact metamorphosed and metasomatized series of finely interbedded argillaceous and calcareous sediments, with interleaved flows of picrite‐basalt and basic pyroclastics, the scheelite ore being limited to two limestone horizons. The range and gradation in composition of the original rocks has resulted in an unusual variety of metamorphic rocks, including forsterite‐phlogopite‐spinel‐tremolite hornfels, antho‐phyllite‐cordierite hornfels, biotite hornfels, actinolite hornfels, a variety of calc‐flinta, and marbles. The original sedimentation gave rise to a rapid alternation of limestone and shale, many times repeated, and during metamorphism these rocks reacted with each other to produce narrow bands of calc‐flinta.

Subsequent pyrometasomatism selectively converted the greater part of the marble beds to scheelite‐bearing andradite skarn, leaving the various hornfels and calc‐flinta very little affected. The replacement of the marble was a volume for volume process, and the conversion of 1,000,000 tons of marble to average grade ore involved the introduction of about 350,000 tons of SiO2, 250,000 tons of Fe2O3, 55,000 tons A12O3, 30,000 tons of H2O and 82,500 tons of CaO.

The temperature of the contact metamorphism attained over 500° C., and the rocks cooled to about 400° C. before the pyrometasomatism occurred. The rocks giving rise to the various hornfels underwent varying degrees of contraction during metamorphism, whereas the limestones probably expanded during metamorphism, and became more permeable to solutions.  相似文献   

10.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

11.
Crystallization of Chromite and Chromium Solubility in Basaltic Melts   总被引:6,自引:3,他引:6  
The equilibrium between chromite and melt has been determinedon four basalts at temperatures of 1200–1400?C over arange of oxygen fugacity (fo2) and pressures of 1 atm and 10kb. The Cr content of chromite-saturated melts at 1300?C and1 atm ranges from 0?05 wt.% Cr2O3 at a log fo2= –3 to1?4 wt.% at a log fo2=–12?8. The Cr2+/Cr3+ of melt increaseswith decreasing fo2 and is estimated by assuming a constantpartitioning of Cr3+ between chromite and melt at constant temperature.The estimated values of Cr2+/Cr3+ in the melt are at fo2 valuesof 4–5 orders of magnitude lower than the equivalent Fe2+/Fe3+values. The Cr/(Cr+Al) of chromite coexisting with melt at constanttemperature changes little with variation of fo2 below log fo2=–6.Five experiments at 10 kb indicate that Cr2O3 dissolved in themelt is slightly higher and the Cr/(Cr + Al) of coexisting chromiteis slightly lower than experiments at 1 atm pressure. Thus variationin total pressure cannot explain the large variations of Cr/(Cr+ Al) that are common to mid-ocean ridge basalt (MORB) chromite. Experiments on a MORB at 1 atm at fo2 values close to fayalite-magnetite-quartz(FMQ) buffer showed that the Al2O3 content of melt is highlysensitive to the crystallization or melting of plagioclase,and consequently coexisting chromite shows a large change inCr/(Cr + Al). It would appear, therefore, that mixing of a MORBmagma containing plagioclase with a hotter MORB magma undersaturatedin plagioclase may give rise to the large range of Cr/(Cr +Al) observed in some MORB chromite.  相似文献   

12.
Tremolite-hornblende relationships are reported for high gradeand relatively low grade zones within the Barrovian type SkagitSuite, using rocks that range widely enough in composition toqualify as potential hosts of any calcic amphibole from practicallyA1-free to A1-rich types. Out of over 100 samples analysed bymicroprobe, 22 representative analyses are listed, with end-membercalculations. In the sillimanite grade core of the Skagit Suite, calcic amphibolesfrom various, commonly metasomatized metamorphic ultramaficsand genetically related hornblendites, from amphibolites, schistsand gneisses, and from some metamorphosed impure dolomites showcontinuous solid solution between tremolite and highly aluminoushornblendes ranging from almost Fe-free to moderately Fe-richtypes. A1total/A1IV is nearly constant and approximates 1?44.The second group of calcic amphiboles studied is from the lower-mediumrange of the epidote amphibolite facies (comprehensively defined),that is, from near and above the oligoclase isograd. Host rocksare variously metasomatized meta-peridotites, and amphibolitesand schists. There is a large compositional gap between analysesof tremolites and of moderately to highly aluminous hornblendes.A1total/A1IV approximates 1?73 both in the tremolite and hornblendefields, as against 1?44 at high grade. Fe-poor hornblendes,such as are stable at high grade, were not found at the lowergrade. At both grades, Al shows good overall correlation withNa+K, with A occupancy, and with Ti (with more Ti at high grade). The compositional gap between tremolite and hornblende analysesfrom the lower grade rocks does not necessarily define a solvusbecause no tremolite-hornblende pairs were found. Rather, theanalyses provide outer limits on the possible width of a solvusat this grade (T). However, certain data suggest that a truemiscibility gap not only exists but probably is not a greatdeal narrower than the gap between the actual analyses. Besides,the proposed restriction on A1/Fe ratios at this grade wouldreduce the probability of finding tremolite-hornblende pairs.  相似文献   

13.
Water solubility in orthopyroxene   总被引:7,自引:0,他引:7  
The solubility of water in pure enstatite was measured on samples synthesized at 1,100 °C and pressures to 100 kbar. Enstatite crystals were grown under water-saturated conditions from a stoichiometric mixture of high-purity SiO2 and Mg(OH)2. Water contents were calculated from polarized FTIR spectra measured on oriented single crystals. The water solubility in orthoenstatite increases with pressure to 867ᆷ ppm H2O by weight at 75 kbar. At 100 kbar, in the stability field of high-clinoenstatite, a water solubility of 714ᆷ ppm was observed. The water solubility in enstatite at 1,100 °C can be described by the equation cH2O=AfH2O exp(-P(V/RT), where fH2O is water fugacity, A=0.0204 ppm/bar and (V=12.3 cm3/mol. The infrared spectra of the hydrous enstatite crystals show a sharp, intense band at 3,363 cm-1 and a broad, weaker band at 3,064 cm-1. Both bands are strongly polarized parallel c. Most likely, pairs of protons attached to non-bridging oxygen atoms substitute for Mg2+. In order to investigate the effect of chemical impurities on water solubility in enstatite, an additional series of experiments was carried out with gels doped with Al, B, or Li as starting material. Whereas, the presence of Li and B had no detectable effect on water solubility, the addition of about 1 wt% Al2O3 increased water solubility in enstatite from 199 to 1,100 ppm at 1,100°C and 15 kbar. In the infrared spectra of these aluminous samples, additional bands occur in the range from 3,450 to 3,650 cm-1. Similar bands are also observed in natural, aluminous orthopyroxenes and are most likely caused by protons coupled with Al according to the substitution of Al3++H+ for Si4+. A series of hydrous annealing experiments on a natural, gem-quality aluminous enstatite from Tanzania yielded water solubilities generally consistent with the results from the synthetic model systems. The results presented here imply that pure enstatite has a similar storage capacity for water as olivine; however, aluminous orthopyroxenes in the mantle may dissolve much larger amounts of water comparable with the entire mass of the present hydrosphere. Moreover, the mechanism of aluminum substitution in orthopyroxenes, i.e., the distribution of Al between tetrahedral and octahedral sites, may be a potential probe of water fugacity.  相似文献   

14.
The stability of the high-pressure phase Mg-sursassite, previously MgMgAl-pumpellyite, in ultramafic compositions has been determined in experiments in the system MgO-Al2O3-SiO2-H2O (MASH). The breakdown of Mg-sursassite + forsterite + enstatite to pyrope + vapour with increasing temperature was bracketed at 6.0 and 7.0 GPa. Below 6.0 GPa, Mg-sursassite + forsterite + vapour reacts to chlorite + enstatite. This reaction provides a mechanism for transfer of water from chlorite- to Mg-sursassite-bearing assemblages. At pressures of 7.0 GPa and above, the assemblage Mg-sursassite + phase A + enstatite was found. Phase relations involving Mg-sursassite and phase A are considered. For bulk compositions with a low water content, the vapour-absent reaction Mg-sursassite + forsterite = pyrope + phase A + enstatite determines the upper-pressure stability of Mg-sursassite, and provides a mechanism for the complete transfer of water from Mg-sursassite to phase A-bearing assemblages. Mg-sursassite plays an important role in peridotite compositions in the subducting slab because, at temperatures below 700 °C, it can transfer water from hydrous phases such as antigorite and chlorite to high-pressure stable phases such as phase A.  相似文献   

15.
Progressive metamorphism of impure dolomitic limestone in the 1.5 to 2.5 km wide contact aureole surrounding the northernmost portion of the boulder batholith has resulted in a consistent sequence of uniformly distributed zones of low-variance mineral parageneses separated by abrupt and distinctive isograds. In silica-undersaturated, aluminous marbles, the following mineral assemblages occur, in order of increasing grade: calcite-dolomite-calcic amphibole-chlorite, calcite-dolomite-calcic amphibole-chlorite-spinel, calcite-dolomite-calcic amphibole-chlorite-olivine-spinel, calcite-dolomite-chlorite-olivine-spinel, calcite-dolomite-olivine-spinel. The spatial distribution of parageneses and the occurrence of low-variance parageneses indicate buffering of the pore fluid composition by the local mineral assemblages. The observed sequence of mineral reactions and the spacing of isograds is in good agreement with experimental and calculated equilibria in terms of P-T-X CO 2and temperatures of equilibration inferred from calcite-dolomite geothermometry, which range from 435 to 607 °C across the aureole.Microprobe analyses of coexisting minerals indicate attainment of exchange equilibrium. Calcic amphibole and chlorite coexisting with calcite and dolomite become progressively more aluminous with increasing grade; calcic amphibole changes rapidly from Al-poor tremolite to pargasite, while AlIV in Cte increases from 2.0 to 2.3 atoms per 8 tetrahedral sites. Observed low-variance assemblages fix the activities of calcic amphibole and chlorite end-member components as a function of P and T, and hence the systematic compositional variation in these phases is not an independent variable, but is controlled by the local mineral assemblage.  相似文献   

16.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

17.
The sapphirine (Sa)-spinel (Sp)-quartz (Qz)-bearing rocks fromPaderu occur as lenticular enclaves within the Precambrian khondalite-charnockiteterrane of southern India. In addition these rocks contain orthopyroxene(Opx), sillimanite (Sill), garnet (Gt), cordierite (Cd), biotite,potash feldspar (Kf), plagioclase, and symplectites of Cd-Kf-Qz-Opx.The symplectites may have formed from the breakdown of osumilite.Grain contacts of sapphirine and spinel with quartz are rarelyobserved and the incompatibility with quartz during later stagesis displayed by the development of several types of polymineralicreaction coronas. The coronas in the different rock types A,B, etc. are (minerals listed from core to rim of corona): (A-1) sapphirine-bearing rock type without spinel: Sa-Sill-Opx,Sa-Sill-Cd, Sa-Cd-Opx (A-2) sapphirine and spinel-bearing: Sp-Sa-Sill-Opx-Qz, Sp-Sa-Sill,Sp-Sa-Opx, Sp-Sill-Opx, Sp-Sa-Sill-Gt-Qz, Sa-Sill-Opx, Sp-Sa-Sill-Opx,Sa-Sill-Opx-Gt, Sp-Sa-Opx-Gt, Sp-Sa-Sill-Gt; and (B) spinel-bearingbut sapphirine free: Sp-Sill-Opx, Sp-Sill-Gt, Sp-Cd. Commonlythe coronas in the rock type A 2 and B also contain ilmeno-hematite?corundumin the core in association with spinel. These rock types alsoprovide textural evidence for later crystallization of Cd, Cd+ Sa, and Gt + Qz from Opx+Sill?Qz and Gt+Sill+Qz. Sapphirine is aluminous (near 7(Mg, Fe2+)O?9(Al, Fe3+)2O3?3SiO2)and contains up to 12?2 wt. per cent iron as FeO. Orthopyroxeneis also aluminous, containing up to 10?4 wt. per cent Al2O3.Sapphirine and spinel have relatively high contents of Fe2O3.XMg in the Fe-Mg minerals increases from rock type B to A2 toA1. A sequence of reactions has been deduced from coronas and otherreaction textures, and from the phase compatibility relationsin the FeO-MgO-Al2O3-SiO2-H2O system. The P-T-X relationshipsfrom geothermobarometry and petrogenetic grids, viz. µFe2O3vs. µFeO and µH2O vs. µFe2O3, suggest: (1)a retrograde, mildly decompressive trajectory from 900?60?C/65?0?7kb (core) to 760?50?C/5 ? 0?6 kb (rim); and (2) the observedmineralogy of the coronas and reactions deduced from them aredependent on the relative FeO, Fe2O3, and H2O contents of therocks (µFeO3, µFe2O3), and µH2O).  相似文献   

18.
A suite of mantle peridotite xenoliths from the Malaitan alnoitedisplay both trace element enrichment and modal metasomatism.Pargasitic amphibole is present in both garnet- and spinelbearingxenoliths, formed by reaction of a metasomatic fluid (representedby H2O and Na2O) with the peridotite assemblage. Two pargasite-formingreactions are postulated, whereby spinel is totally consumed: 6MgAl2O4 + 8CaMgSi2O6 + 7Mg2Si2O6 + 4H2O + 2Na2O = 4NaCa2Mg4Al3Si6O12(OH)2+ 6Mg2SiO4 or spinel is both a reactant (low Cr) and a product (high Cr): 24MgAlCrO4 + 16CaMgSi2O6 + 14Mg2Si2O6 + 8H2O + 4Na2O = 8NaCa2Mg4Al3Si6O12(OH)2+ 12MgCr2O4 + 12Mg2SiO4 Seven garnet—spinel-peridotites display cryptic metasomatismas demonstrated by the LREE enrichment in clinopyroxenes. TheLREE enrichment correlates positively with 143ND/144ND (0?512771–0?513093)which defines a mixing line between a mantle MORB source anda metasomatic fluid. Isotopic evidence (Sr and Nd) from garnet,clinopyroxene, and amphibole demonstrate this fluid has notoriginated in the alnoite sensu stricto. Calculated amphiboleequilibrium liquids show a range in La/Yb and Ce/Yb ratios similarto those calculated for the augite and subcalcic diopside megacrysts.Sr and Nd isotope analyses from amphibole are within error ofthe augite (PHN4074) and subcalcic diopside megacrysts (CRN2I6,PHN4069, and PHN4085). It is concluded that fluids emanatedfrom a proto-alnoite magma throughout megacryst fractionation,and the mixing line was generated during the crystallizationof the subcalcic diopsides. This study demonstrates that metasomatismrepresented in these xenoliths is not a prerequisite for alnoitemagmatism, but is a consequence of it.  相似文献   

19.
Garnet-rich xenoliths in a Tertiary dike in the eastern MojaveDesert, California, preserve information about the nature andhistory of the lower crust. These xenoliths record pressuresof 10–12 kbar and temperatures of 750–800C. Approximately25% have mafic compositions and bear hornblende + plagioclase+ clinopyroxene + quartz in addition to garnet. The remainder,all of which contain quartz, include quartzose, quartzofeldspathic,and aluminous (kyanitesillimanite-bearing) varieties. Mostxenoliths have identifiable protoliths—mafic from intermediateor mafic igneous rocks, quartzose from quartz-rich sedimentaryrocks, aluminous from Al-rich graywackes or pelites, and quartzofeldspathicfrom feldspathic sediments and/or intermediate to felsic igneousrocks. However, many have unusual chemical compositions characterizedby high FeO(t), FeO(t)/MgO, Al2O3, and Al2O3/CaO, which correspondto high garnet abundance. The mineralogy and major-and trace-elementcompositions are consistent with the interpretation that thexenoliths are the garnet-rich residues of high-pressure crustalmelting, from which granitic melt was extracted. High 87Sr/86Srand low 143Nd/144Nd, together with highly discordant zirconsfrom a single sample with Pb/Pb ages of 1.7 Ga, demonstratethat the crustal material represented by the xenoliths is atleast as old as Early Proterozoic. This supracrustal-bearinglithologic assemblage may have been emplaced in the lower crustduring either Proterozoic or Mesozoic orogenesis, but Sr andNd model ages> 4 Ga require late Phanerozoic modificationof parent/daughter ratios, presumably during the anatectic event.Pressures of equilibration indicate that peak metamorphism andmelting occurred before the Mojave crust had thinned to itscurrent thickness of <30 km. The compositions of the xenolithssuggest that the lower crust here is grossly similar to estimatedworld-wide lower-crustal compositions in terms of silica andmafic content; however, it is considerably more peraluminous,has a lower mg-number, and is distinctive in some trace elementconcentrations, reflecting its strong metasedimentary and restiticheritage. * Author to whom correspondence should be addressed. Present address: Rensselaer Polytechnic Institute, Department of Earth and Environmental Sciences, Troy, New York 12180, USA. Fax: 518–276–8627; email: hanchj{at}rpi.edu.  相似文献   

20.
Chromite separates within the Peridotite Zone of the 2,700 Ma-old Stillwater Complex are characterized by low 187Re/188Os (0.009 to 1.74) and relatively high Os concentrations (8.74 to 78.2 ppb). Their calculated initial Os isotopic compositions likely reflect the compositions of the magmas from which they crystallized. The chromites show variable initial Os isotopic compositions (%Os of +2.0 to +16.4) over the vertical extent of the Peridotite Zone, implicating at least two sources of Os. Both the range of %Os and values of %Os decrease upsection. These variations in %Os were caused by mixing of variable proportions of two magmas having different Os isotopic compositions. One of the magmatic components was a more primitive magma with a nearly chondritic Os isotopic composition. The other magma had a radiogenic Os isotopic composition as a result of assimilation of crust, perhaps of sedimentary rocks beneath the Stillwater Complex. The gradual decrease in the initial %Os values of the chromite layers with increasing stratigraphic height implies a decreasing relative contribution from the contaminated magma throughout the growth of the Peridotite Zone. Small variations in %Os between different chromite occurrences within the H multicyclic unit reflects the petrologic requirement that chromite layers crystallize from slightly different proportions of the magmas, compared to chromite from olivine- and orthopyroxene-rich layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号