首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid population growth and ongoing development activities has resulted in natural resources demolition. However, the dynamics of the natural resources in relation to different biophysical and socio-economic factors are still remains poorly understood. The present study investigates the basic natural resources i.e. forest, rangeland and surface water bodies’ status using satellite data for the years 1990, 1998, and 2006, and their change detection in relation to biophysical and socio-economic factors. Monitoring land-use/cover change detection using remotely sensed data has been a well recognized technique. The analysis of change detection revealed eleven important land cover changes, which occurred during the past 16 years (1990–2006) in the region. The rate of land cover change was observed to vary across the sub periods and a general decline of forest cover and increase in rangelands and water bodies was observed. Logistic regression model was employed to analyze the relationship between changes and explanatory factors. The land cover change results and logistic models developed in this study are useful in supporting natural resources management efforts and provide useful information for managers/policy makers in formulation of sustainable management strategies for the region.  相似文献   

2.
以贵州省县级农用地数据库的建立方法为例,概述在GIS和DEM技术支持下的农用地分等定级的技术路线,详述GIS环境下图库的建立、评价单元的划分、数字高程模型的应用和成果的应用等几项关键步骤,探讨如何以GIS技术建立县级农用地的分等定级体系.  相似文献   

3.
In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better understand and communicate the complex spatial-temporal dynamics, return periods and potential/actual consequences to decision-makers and the local population.  相似文献   

4.
There are now a wide range of techniques that can be combined for image analysis. These include the use of object-based classifications rather than pixel-based classifiers, the use of LiDAR to determine vegetation height and vertical structure, as well terrain variables such as topographic wetness index and slope that can be calculated using GIS. This research investigates the benefits of combining these techniques to identify individual tree species. A QuickBird image and low point density LiDAR data for a coastal region in New Zealand was used to examine the possibility of mapping Pohutukawa trees which are regarded as an iconic tree in New Zealand. The study area included a mix of buildings and vegetation types. After image and LiDAR preparation, single tree objects were identified using a range of techniques including: a threshold of above ground height to eliminate ground based objects; Normalised Difference Vegetation Index and elevation difference between the first and last return of LiDAR data to distinguish vegetation from buildings; geometric information to separate clusters of trees from single trees, and treetop identification and region growing techniques to separate tree clusters into single tree crowns. Important feature variables were identified using Random Forest, and the Support Vector Machine provided the classification. The combined techniques using LiDAR and spectral data produced an overall accuracy of 85.4% (Kappa 80.6%). Classification using just the spectral data produced an overall accuracy of 75.8% (Kappa 67.8%). The research findings demonstrate how the combining of LiDAR and spectral data improves classification for Pohutukawa trees.  相似文献   

5.
This study represents a hybrid intelligence approach based on the differential evolution optimization and Least-Squares Support Vector Machines for shallow landslide prediction, named as DE–LSSVMSLP. The LSSVM is used to establish a landslide prediction model whereas the DE is adopted to search the optimal tuning parameters of the LSSVM model. In this research, a GIS database with 129 historical landslide records in the Quy Hop area (Central Vietnam) has been collected to establish the hybrid model. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to assess the performance of the newly constructed model. Experimental results show that the proposed model has high performances with approximately 82% of AUCs on both training and validating datasets. The model’s results were compared with those obtained from other methods, Support Vector Machines, Multilayer Perceptron Neural Networks, and J48 Decision Trees. The result comparison demonstrates that the DE–LSSVMSLP deems best suited for the dataset at hand; therefore, the proposed model can be a promising tool for spatial prediction of rainfall-induced shallow landslides for the study area.  相似文献   

6.
The main objective of the study was to evaluate and compare the overall performance of three methods, frequency ratio (FR), certainty factor (CF) and index of entropy (IOE), for rainfall-induced landslide susceptibility mapping at the Chongren area (China) using geographic information system and remote sensing. First, a landslide inventory map for the study area was constructed from field surveys and interpretations of aerial photographs. Second, 15 landslide-related factors such as elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to faults, distance to rivers, distance to roads, landuse, NDVI, lithology and rainfall were prepared for the landslide susceptibility modelling. Using these data, three landslide susceptibility models were constructed using FR, CF and IOE. Finally, these models were validated and compared using known landslide locations and the receiver operating characteristics curve. The result shows that all the models perform well on both the training and validation data. The area under the curve showed that the goodness-of-fit with the training data is 79.12, 80.34 and 80.42% for FR, CF and IOE whereas the prediction power is 80.14, 81.58 and 81.73%, for FR, CF and IOE, respectively. The result of this study may be useful for local government management and land use planning.  相似文献   

7.
The objective of this study is to produce groundwater potential map (GPM) and its performance assessment using a data-driven evidential belief function (EBF) model. This study was carried out in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran. It’s conducted in three main stages such as data preparation, groundwater potential mapping using EBF and validation of constructed model using receiver operating characteristic (ROC) curve. At first, 864 groundwater data were collected from spring locations; out of that, 605 (70%) locations were selected for training/model building and the remaining 259 (30%) cases were used for the model validation. In the next step, 12 effective factors such as altitude, slope aspect, slope degree, slopelength (LS), topographic wetness index (TWI), plan curvature, land use, lithology, distance from rivers, drainage density, distance from faults and fault density were extracted from the spatial database. Subsequently, GPM was prepared using EBF model in ArcGIS environment. Finally, the ROC curve and area under the curves (AUC) were drawn for verification purposes. The validation of results showed that the AUC for EBF model is 81.72%. In general, this result can be helpful for planners and engineers in water resource management and land-use planning.  相似文献   

8.
National borders play an important role in everyday life. Interest in border studies has increased with recent changes in geographical locations of the border or the fluctuation of the permeability of the border between some countries, such as in the European Union. Whether the nations are trying to increase traffic flow of the border or to implement stricter border control, having appropriate information of the border is crucial for effective policymaking.

The objective of this research was to identify areas of high porosity, or high permeability, for pedestrians along the southern national border region in Carinthia, Austria using terrain, land use, and road data along with geocomputational methods. Two unsupervised classification methods, the fuzzy K-means clustering and the Self-Organizing Map, were applied to segment the border into homogeneous zones according to topographic and infrastructural attributes. The fuzzy K-means clustering method was chosen for its ability to allow for a continuous approach to classification. With this method, an object can belong, with different degrees of membership, to multiple classes, which is a more realistic reflection of the natural world than discrete clustering, where each object can only belong to one class. However, the fuzzy K-means clustering method does have disadvantages, i.e. the user must determine the number of classes and the input parameters are required to be in continuous format. The second classification method, the Self-Organizing Map, is a type of artificial neural network and was chosen for its ability to automatically determine the number of classes and handle categorical data. The Self-Organizing Map is unique because it can transform high dimensional data into low dimensional display while preserving the topology and spatial distribution of the input parameters. The results of the two classification methods suggest that the fuzzy K-means classification is more effective than the Self-Organizing Map for this situation. However, more research is needed to determine the fit of these algorithms for particular spatial data classification tasks.

The results obtained from this research provide an insight into the permeability of the border region of Carinthia, Slovenia, and Italy to pedestrian traffic and can be potentially useful for decision making processes for tourism development and road transportation management in that region. Furthermore, the approach presented in this article can be applied to other national borders to identify zones permeable to pedestrian traffic.  相似文献   

9.
The main aim of this study was to produce landslide susceptibility maps using statistical index (SI), certainty factors (CF), weights of evidence (WoE) and evidential belief function (EBF) models for the Long County, China. Firstly, a landslide inventory map, including a total of 171 landslides, was compiled on the basis of earlier reports, interpretation of aerial photographs and supported by extensive field surveys. Thereafter, all landslides were randomly separated into two data sets: 70% landslides (120 points) were selected for establishing the model and the remaining landslides (51 points) were used for validation purposes. Eleven landslide conditioning factors, such as slope aspect, slope angle, plan curvature, profile curvature, altitude, distance to faults, distance to roads, distance to rivers, lithology, NDVI and land use, were considered for landslide susceptibility mapping in this study. Then, the SI, CF, WoE and EBF models were used to produce the landslide susceptibility maps for the study area. Finally, the four models were validated using area under the curve (AUC) method. According to the validation results, the EBF model (AUC = 78.93%) has a higher prediction accuracy than the SI model (AUC = 77.72%), the WoE model (AUC = 77.62%) and the CF model (AUC = 77.72%). Similarly, the validation results also indicate that the EBF model has the highest training accuracy of 80.25%, followed by SI (79.80%), WoE (79.71%) and CF (79.67%) models.  相似文献   

10.
杨洪  兀伟  马聪丽 《四川测绘》2007,30(2):60-66
本文通过分析目前主流机载LiDAR的各项指标及其实际意义,从多个方面证明了机载LiDAR能够有效解决西南高山峡谷地区大比例尺地形测绘工作所面临的困难。  相似文献   

11.
随着计算机技术和信息技术的快速发展,我国土地利用规划信息系统软件和数据库系统软件的应用和开发水平不断提高,但在系统功能、数据组织、数据管理、系统扩展性方面存在一些问题,尤其是系统中缺乏决策支持功能,严重制约了系统的广泛应用。为此,本文提出地理信息系统和决策支持系统集成的土地利用规划空间决策支持系统,并对系统的总体架构、开发方式和功能进行了探讨。  相似文献   

12.
The study aims at delineating groundwater potential zones using geospatial technology and analytical hierarchy process (AHP) techniques in mining impacted hard rock terrain of Ramgarh and part of Hazaribagh districts, Jharkhand, India. Relevant thematic layers were prepared and assigned weight based on Saaty’s 9-point scale and normalized by eigenvector technique of AHP to identify groundwater prospect in the study area. The weighted linear combination method was applied to prepare the groundwater potential index in geographic information system. Final groundwater prospects were classified as excellent, very good, good, moderate, poor and very poor groundwater potential zones. Study thus revealed that the excellent, very good and good groundwater potential zones, respectively, cover 148.3, 373.66 and 438.86 km2 of the study area, whereas the poor groundwater potential zone covers 180.05 km2. Validation was done through a receiver operating characteristic curve, which indicated that AHP had good prediction accuracy (AUC = 75.45%).  相似文献   

13.
In recent decades, rapid growth of travel volume has resulted in a significant increase in traffic congestion, accidents, environmental pollution and energy consumption. Accurate traffic data are drastically needed for effective evaluation of traffic systems in order to alleviate the impacts of increasing travel volume of the quality of life and economic development of urban areas. This article provides a discussion on a data acquisition methodology for highway traffic pattern recognition and congestion analysis by integrating data from the global positioning system (GPS) with a geographic information system (GIS). The GPS technology is a powerful tool in capturing continuous positioning and timing information, whereas the GIS is capable of storing, managing, manipulating, analyzing and displaying the acquired spatial information. Compared to previous studies, the effective integration of the two technologies allows for traffic analysis to be conducted at a finer resolution. The proposed method is illustrated with a case study on multiple major highway segments in Columbus, Ohio.  相似文献   

14.
1 lntroductionA Mraphical object normal1y poSSeSSes threecomPOnents: spatiaI, temporal and attribute asPeCts.The first comPOnent describes the spatial extent ofan object, such as the boundary of a Iand parcel.The second describes timesrelated information, fOrinstance, the beginning and end time of a land Par-cel. The third describes the attribute characteristicsof obects, fOr example, the type of land cover.These three comPOnents constitute a complete im-age of an object.In most of the…  相似文献   

15.
We propose a framework to systematically generate event landslide inventory maps from satellite images in southern Taiwan, where landslides are frequent and abundant. The spectral information is used to assess the pixel land cover class membership probability through a Maximum Likelihood classifier trained with randomly generated synthetic land cover spectral fingerprints, which are obtained from an independent training images dataset. Pixels are classified as landslides when the calculated landslide class membership probability, weighted by a susceptibility model, is higher than membership probabilities of other classes. We generated synthetic fingerprints from two FORMOSAT-2 images acquired in 2009 and tested the procedure on two other images, one in 2005 and the other in 2009. We also obtained two landslide maps through manual interpretation. The agreement between the two sets of inventories is given by the Cohen’s k coefficients of 0.62 and 0.64, respectively. This procedure can now classify a new FORMOSAT-2 image automatically facilitating the production of landslide inventory maps.  相似文献   

16.
Locating additional long-term groundwater resources in semi-arid regions of developing countries with growing populations is an expensive undertaking. Simple geographic information system (GIS) techniques can be utilised to facilitate efficient application of expensive geophysical techniques and test-drilling by functioning as an interdisciplinary integration and decision-making tool, especially in data-poor and poorly mapped environments where more sophisticated GIS techniques are not applicable. The paper demonstrates this in the context of the search for groundwater alternatives to the dwindling river water supply in the Boteti area of the Kalahari region in Botswana.  相似文献   

17.
Drainage networks are one of the main elements characterizing basins, and network topology and geometry form the basis of many hydrological and geomorphological models (eg Geomorphological Unitary Hydrograph). The identification and manual delineation of channel networks from maps or aerial photographs requires much time and effort. In the last two decades, algorithms and procedures for automated extraction of drainage networks from digital elevation data have been developed and implemented in many specialized software applications. Nevertheless, automatically delineated channel networks do not always show close agreement with manually delineated networks. This paper describes a comparative analysis between a drainage network automatically extracted from a gridded digital elevation model, and the drainage network delineated manually from stereographic pairs of aerial photographs. The analysis showed that the automatic extraction technique may be adequate for catchment headwaters, but is inappropriate in the middle and lower basins, especially for alluvial fans and calcareous platforms. The paper suggests improving the automatic extraction technique by adapting it to operate with different parameters for each of the geomorphological units within the catchment.  相似文献   

18.
The leaf area index (LAI) of plant canopies is an important structural parameter that controls energy, water, and gas exchanges of plant ecosystems. Remote sensing techniques may offer an alternative for measuring and mapping forest LAI at a landscape scale. Given the characteristics of high spatial/spectral resolution of the WorldView-2 (WV2) sensor, it is of significance that the textural information extracted from WV2 multispectral (MS) bands will be first time used in estimating and mapping forest LAI. In this study, LAI mapping accuracies would be compared from (a) spatial resolutions between 2-m WV2 MS data and 30-m Landsat TM imagery, (b) the nature of variables between spectrum-based features and texture-based features, and (c) sensors between TM and WV2. Therefore spectral/textural features (SFs) were first selected and tested; then a canonical correlation analysis was performed with different data sets of SFs and LAI measurement; and finally linear regression models were used to predict and map forest LAI with canonical variables calculated from image data. The experimental results demonstrate that for estimating and mapping forest LAI, (i) using high resolution data (WV2) is better than using relatively low resolution data (TM); (ii) extracted from the same WV2 data, texture-based features have higher capability than that of spectrum-based features; (iii) a combination of spectrum-based features with texture-based features could lead to even higher accuracy of mapping forest LAI than their either one separately; and (iv) WV2 sensor outperforms TM sensor significantly. However, we need to address the possible overfitting phenomenon that might be brought in by using more input variables to develop models. In addition, the experimental results also indicate that the red-edge band in WV2 was the worst on estimating LAI among WV2 MS bands and the WV2 MS bands in the visible range had a much higher correlation with ground measured LAI than that red-edge and NIR bands did.  相似文献   

19.
Cellular Automata (CA) models at present do not adequately take into account the relationship and interactions between variables. However, land use change is influenced by multiple variables and their relationships. The objective of this study is to develop a novel CA model within a geographic information system (GIS) that consists of Bayesian Network (BN) and Influence Diagram (ID) sub‐models. Further, the proposed model is intended to simplify the definition of parameter values, transition rules and model structure. Multiple GIS layers provide inputs and the CA defines the transition rules by running the two sub‐models. In the BN sub‐model, land use drivers are encoded with conditional probabilities extracted from historical data to represent inter‐dependencies between the drivers. Using the ID sub‐model, the decision of changing from one land use state to another is made based on utility theory. The model was applied to simulate future land use changes in the Greater Vancouver Regional District (GVRD), Canada from 2001 to 2031. The results indicate that the model is able to detect spatio‐temporal drivers and generate various scenarios of land use change making it a useful tool for exploring complex planning scenarios.  相似文献   

20.
Most part of Iran is arid and semi-arid; thus in most parts of the region, groundwater is the only source of water. This research presents a method based on a spatial multi-criterion evaluation (SMCE) for designing possible sites of underground dams and ranks them according to their suitability. The method was tested for siting underground dams in the Alborz Province, Iran. At first, screening algorithm was applied using exclusionary criteria, and thirty-one potential areas were recognized in the study area. In the next step, a suitable gorge or valley was recognized using the combination of basic maps and extensive field surveys (long axis of tank level) in each potential area. Subsequently, the analytical hierarchy process was used as a powerful tool for decision-making in the SMCE in order to evaluate different criteria for underground dam sites. SMCE techniques were then applied to combine the criteria, and obtain a suitability map in the study area. These sites were then compared and ranked according to their main criteria such as water, storage, axis and socio-economics. All these criteria were assessed through geographical information system modelling. This method shows passable results and could be used for site selection of underground dams in other regions of Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号