首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid increase in human population has increased the groundwater resources demand for drinking, agricultural and industrial purposes. The main purpose of this study is to produce groundwater potential map (GPM) using weights-of-evidence (WOE) and evidential belief function (EBF) models based on geographic information system in the Azna Plain, Lorestan Province, Iran. A total number of 370 groundwater wells with discharge more than 10 m3s?1were considered and out of them, 256 (70%) were randomly selected for training purpose, while the remaining114 (30%) were used for validating the model. In next step, the effective factors on the groundwater potential such as altitude, slope aspect, slope angle, curvature, distance from rivers, drainage density, topographic wetness index, fault distance, fault density, lithology and land use were derived from the spatial geodatabases. Subsequently, the GPM was produced using WOE and EBF models. Finally, the validation of the GPMs was carried out using areas under the ROC curve (AUC). Results showed that the GPM prepared using WOE model has the success rate of 73.62%. Similarly, the AUC plot showed 76.21% prediction accuracy for the EBF model which means both the models performed fairly good predication accuracy. The GPMs are useful sources for planners and engineers in water resource management, land use planning and hazard mitigation purpose.  相似文献   

2.
The objective of this study is to produce groundwater potential map (GPM) and its performance assessment using a data-driven evidential belief function (EBF) model. This study was carried out in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran. It’s conducted in three main stages such as data preparation, groundwater potential mapping using EBF and validation of constructed model using receiver operating characteristic (ROC) curve. At first, 864 groundwater data were collected from spring locations; out of that, 605 (70%) locations were selected for training/model building and the remaining 259 (30%) cases were used for the model validation. In the next step, 12 effective factors such as altitude, slope aspect, slope degree, slopelength (LS), topographic wetness index (TWI), plan curvature, land use, lithology, distance from rivers, drainage density, distance from faults and fault density were extracted from the spatial database. Subsequently, GPM was prepared using EBF model in ArcGIS environment. Finally, the ROC curve and area under the curves (AUC) were drawn for verification purposes. The validation of results showed that the AUC for EBF model is 81.72%. In general, this result can be helpful for planners and engineers in water resource management and land-use planning.  相似文献   

3.
The development of groundwater favourability map is an effective tool for the sustainability management of groundwater resources in typical agricultural regions, such as southern Perak Province, Malaysia. Assessing the potentiality and pollution vulnerability of groundwater is a fundamental phase of favourability mapping. A geographic information system (GIS)-based Boolean operator of a spatial analyst module was applied to combine a groundwater potentiality map (GPM) model and a groundwater vulnerability to pollution index (GVPI) map, thereby establishing the favourable zones for drinking water exploration in the investigated area. The area GPM model was evaluated by applying a GIS-based Dempster–Shafer–evidential belief function model. In the evaluation, six geoelectrically determined groundwater potential conditioning factors (i.e. overburden resistivity, overburden thickness, aquifer resistivity, aquifer thickness, aquifer transmissivity and hydraulic conductivity) were synthesized by employing the probability-based algorithms of the model. The generated thematic maps of the seven hydrogeological parameters of the DRASTIC model were considered as pollution potential conditioning factors and were analysed with the developed ordered weighted average–DRASTIC index model algorithms to construct the GVPI map. Approximately 88.8 and 85.71% prediction accuracies for the Groundwater Potentiality and GVPI maps were established using the reacting operating characteristic curve method and water quality status–vulnerability zone relationship scheme, respectively. Finally, the area groundwater favourability map (GFM) model was produced by applying a GIS-based Boolean operator on the Groundwater Potentiality and GVPI maps. The GFM model reveals three distinct zones: ‘not suitable’, ‘less suitable’ and ‘very suitable’ zones. The area analysis of the GFM model indicates that more than 50% of the study area is covered by the ‘very suitable’ zones. Results produce a suitability map that can be used by local authorities for the exploitation and management of drinking water in the area. The study findings can also be applied as a tool to help increase public awareness of groundwater issues in developing countries.  相似文献   

4.
The landslide hazard occurred in Taibai County has the characteristics of the typical landslides in mountain hinterland. The slopes mainly consist of residual sediments and locate along the highway. Most of them are in the less stable state and in high risk during rainfall in flood season especially. The main purpose of this paper is to produce landslide susceptibility maps for Taibai County (China). In the first stage, a landslide inventory map and the input layers of the landslide conditioning factors were prepared in the geographic information system supported by field investigations and remote sensing data. The landslides conditioning factors considered for the study area were slope angle, altitude, slope aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, normalized difference vegetation index, lithological unit, rainfall and land use. Subsequently, the thematic data layers of conditioning factors were integrated by frequency ratio (FR), weights of evidence (WOE) and evidential belief function (EBF) models. As a result, landslide susceptibility maps were obtained. In order to compare the predictive ability of these three models, a validation procedure was conducted. The curves of cumulative area percentage of ordered index values vs. the cumulative percentage of landslide numbers were plotted and the values of area under the curve (AUC) were calculated. The predictive ability was characterized by the AUC values and it indicates that all these models considered have relatively similar and high accuracies. The success rate of FR, WOE and EBF models was 0.9161, 0.9132 and 0.9129, while the prediction rate of the three models was 0.9061, 0.9052 and 0.9007, respectively. Considering the accuracy and simplicity comprehensively, the FR model is the optimum method. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

5.
Groundwater productivity-potential (GPP) was analysed using the data mining models of an artificial neural network (ANN) and a support vector machine (SVM) in Boryeong city, Korea. The groundwater-productivity data with specific capacity (SPC) is strongly related to hydrogeological factors, and hence the relation may allow for groundwater potential mapping from hydrogeological factors through the ANN and SVM models. A back-propagation algorithm was used for the ANN model while a polynomial kernel was adopted for the SVM model. For the validation of the GPP maps generated from the ANN and SVM models, the area-under-the-curve analysis was performed using the SPC values of well data. The accuracies achieved from the ANN and SVM models are about 83.57 and 80.83%, respectively. It proves that the ANN and SVM models will be highly conducive to developing useful groundwater resources.  相似文献   

6.
ABSTRACT

Groundwater potential mapping (GWPM) in the coastal zone is crucial for the planning and development of society and the environment. The current study is aimed to map the groundwater potential zones of Sindhudurg coastal stretch on the west coast of India, using three machine learning models: random forest (RF), boosted regression tree (BRT), and the ensemble of RF and support vector machine (SVM). In order to achieve the objective, 15 groundwater influencing factors including elevation, slope, aspect, slope length (LS), profile curvature, plan curvature, topographical wetness index (TWI), distance from streams, distance from lineaments, lithology, geomorphology, soil, land use, normalized difference vegetation index (NDVI), and rainfall were considered for inter-thematic correlations and overlaid with spring and well occurrences in a spatial database. A total of 165 spring and well locations were identified, which had been divided into two classes: training and validation, at the ratio of 70:30, respectively. The RF, BRT, and RF-SVM ensemble models have been applied to delineate the groundwater potential zones and categorized into five classes, namely very high, high, moderate, low, and very low. RF, BRT, and ensemble model results showed that 33.3%, 35.6%, and 36.8% of the research area had a very high groundwater potential zone. These models were validated with area under the receiver operating characteristics (AUROC) curve. The accuracy of RF (94%) and hybrid model (93.4%) was more efficient than BRT (89.8%) model. In order to further evaluate and validate, four different sites were subsequently chosen, and we obtained similar results, ensuring the validity of the applied models. Additionally, ground-penetrating radar (GPR) technique was applied to predict the groundwater table and validated by measured wells. The mean difference between measured and GPR predicted groundwater table was 14 cm, which reflected the importance of GPR to guide the location of new wells in the study region. The outcomes of the study will help the decision-makers, government agencies, and private sectors for sustainable planning of groundwater in the area. Overall, the present study provides a comprehensive high-precision machine learning and GPR-based groundwater potential mapping.  相似文献   

7.
The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties.  相似文献   

8.
Fertility, or the availability of nutrients and water, controls forest productivity. It affects its carbon sequestration, and thus the forest's effect on climate, as well as its commercial value. Although the availability of nutrients cannot be measured directly using remote sensing methods, fertility alters several vegetation traits detectable from the reflectance spectra of the forest stand, including its pigment content and water stress. However, forest reflectance is also influenced by other factors, such as species composition and stand age. Here, we present a case study demonstrating how data obtained using imaging spectroscopy is correlated with site fertility. The study was carried out in Hyytiälä, Finland, in the southern boreal forest zone. We used a database of state-owned forest stands including basic forestry variables and a site fertility index. To test the suitability of imaging spectroscopy with different spatial and spectral resolutions for site fertility mapping, we performed two airborne acquisitions using different sensor configurations. First, the sensor was flown at a high altitude with high spectral resolution resulting in a pixel size in the order of a tree crown. Next, the same area was flown to provide reflectance data with sub-meter spatial resolution. However, to maintain usable signal-to-noise ratios, several spectral channels inside the sensor were combined, thus reducing spectral resolution. We correlated a number of narrowband vegetation indices (describing canopy biochemical composition, structure, and photosynthetic activity) on site fertility. Overall, site fertility had a significant influence on the vegetation indices but the strength of the correlation depended on dominant species. We found that high spatial resolution data calculated from the spectra of sunlit parts of tree crowns had the strongest correlation with site fertility.  相似文献   

9.
Groundwater is the most valuable natural resource in arid areas. Therefore, any attempt to investigate potential zones of groundwater for further management of water supply is necessary. Hence, many researchers have worked on this subject all around the world. On the other hand, the Generalized Additive Model (GAM) has been applied to environmental and ecological modelling, but its applicability to other kinds of predictive modelling such as groundwater potential mapping has not yet been investigated. Therefore, the main purpose of this study is to evaluate the performance of GAM model and then its comparison with three popular GIS-based bivariate statistical methods, namely Frequency Ratio (FR), Statistical Index (SI) and Weight-of-Evidence (WOE) for producing groundwater spring potential map (GSPM) in Lorestan Province Iran. To achieve this, out of 6439 existed springs, 4291 spring locations were selected for training phase and the remaining 2147 springs for model evaluation. Next, the thematic layers of 12 effective spring parameters including altitude, plan curvature, slope angle, slope aspect, drainage density, distance from rivers, topographic wetness index, fault density, distance from fault, lithology, soil and land use/land cover were mapped and integrated using the ArcGIS 10.2 software to generate a groundwater prospect map using mentioned approaches. The produced GSPMs were then classified into four distinct groundwater potential zones, namely low, moderate, high and very high classes. The results of the analysis were finally validated using the receiver operating characteristic (ROC) curve technique. The results indicated that out of four models, SI is superior (prediction accuracy of 85.4%) following by FR, GAM and WOE, respectively (prediction accuracy of 83.7, 77 and 76.3%). The result of groundwater spring potential map is helpful as a guide for engineers in water resources management and land use planning in order to select suitable areas to implement development schemes and also government entities.  相似文献   

10.
The present study attempts to delineate different groundwater potential units using remote sensing and geographic information system (GIS) in Khallikote block of Ganjam disrict, Orissa. Thematic maps of geology, geomorphology, land use and land cover, drainage density, lineament density, slope and DEM (digital elevation model) were prepared using the Landsat Thematic Mapper data in 3 spectral bands, band 7 (mid-infrared light), band 4 (near-infrared light), Band 2 (visible green light). Relationship of each layer to the groundwater regime has been evaluated through detailed analysis of the individual hydrological parameters. The SMCE (Spatial Multi-Criteria Evaluation) module in ILWIS (Integrated Land and Water Information System) supports the decision-making process for evaluating the ground water potential zones in the area. The study shows that more than 70% of the block is covered by medium to excellent category having good ground water potential.  相似文献   

11.
The present study has been undertaken to delineate the groundwater potential zones in the hard rock terrain of Palamu district, Jharkhand using the advanced applications of remote sensing, geographical information systems and analytic hierarchy process techniques. The integration and analyses of various thematic databases viz., geomorphology, lithology, soil, slope, lineament density, weathered zone thickness, drainage density and rainfall proved useful in the delineation of GWP zones. The study indicates that only 136?km2 of the study area exhibit excellent groundwater potential, 248?km2 has very good groundwater potential, whereas 36.89 and 38.23% are under poor and very poor groundwater potential zones, respectively. Hence, only a total of 11.6% of the area (490?km2) is classified as high to excellent groundwater potential. The final groundwater prospect map obtained was classified as excellent potential, very good potential, good potential, moderate potential, poor potential and very poor potential zone.  相似文献   

12.
Abstract

The aim of this study was to determine how well the landslide susceptibility parameters, obtained by data-dependent statistical models, matched with the parameters used in the literature. In order to achieve this goal, 20 different environmental parameters were mapped in a well-studied landslide-prone area, the Asarsuyu catchment in northwest Turkey. A total of 4400 seed cells were generated from 47 different landslides and merged with different attributes of 20 different environmental causative variables into a database. In order to run a series of logistic regression models, different random landslide-free sample sets were produced and combined with seed cells. Different susceptibility maps were created with an average success rate of nearly 80%. The coherence among the models showed spatial correlations greater than 90%. Models converged in the parameter selection peculiarly, in that the same nine of 20 were chosen by different logistic regression models. Among these nine parameters, lithology, geological structure (distance/density), landcover-landuse, and slope angle were common parameters selected by both the regression models and literature. Accuracy assessment of the logistic models was assessed by absolute methods. All models were field checked with the landslides resulting from the 12 November 1999, Kayna?li Earthquake (Ms = 7.2).  相似文献   

13.
Using fuzzy analytical hierarchy process (AHP) technique, we propose a method for mineral prospectivity mapping (MPM) which is commonly used for exploration of mineral deposits. The fuzzy AHP is a popular technique which has been applied for multi-criteria decision-making (MCDM) problems. In this paper we used fuzzy AHP and geospatial information system (GIS) to generate prospectivity model for Iron Oxide Copper-Gold (IOCG) mineralization on the basis of its conceptual model and geo-evidence layers derived from geological, geochemical, and geophysical data in Taherabad area, eastern Iran. The FuzzyAHP was used to determine the weights belonging to each criterion. Three geoscientists knowledge on exploration of IOCG-type mineralization have been applied to assign weights to evidence layers in fuzzy AHP MPM approach. After assigning normalized weights to all evidential layers, fuzzy operator was applied to integrate weighted evidence layers. Finally for evaluating the ability of the applied approach to delineate reliable target areas, locations of known mineral deposits in the study area were used. The results demonstrate the acceptable outcomes for IOCG exploration.  相似文献   

14.
NDSI与NDFSI结合的山区林地积雪制图方法   总被引:1,自引:0,他引:1  
积雪是冰冻圈的重要组成部分,因其在可见光波段的高反射率、低导热率的特性以及大面积的覆盖,成为全球辐射平衡的重要决定因子。在中纬度的干旱和半干旱山区,季节性的冰雪融水是春季河川径流的主要补给水源,山区积雪分布的变化对融雪期河流径流量的波动具有重要影响。当前的积雪产品在下垫面为山区林地时会低估积雪面积,从而影响了山区水文过程模拟的精度。本文基于Landsat OLI影像,采用归一化差值积雪指数NDSI和归一化差值林地积雪指数NDFSI相结合的方法,对春季融雪期的阿尔泰山区泰加林地进行积雪识别,并采用海拔高度、温度、以及对应的高分数据对提取结果进行了定量分析。结果表明,采用NDSI进行积雪识别时,山区林地的积雪会被大量漏分;对林地像元采用NDFSI阈值法可以区分林地中是否有积雪分布。NDSI和NDFSI相结合的积雪识别方法操作简单,不需要提供森林分布图等辅助数据,可以有效提高山区林地复杂环境下积雪制图的精度。  相似文献   

15.
Abstract

In the present study, the multi-temporal satellite images of IRS P6 LISS III were used to map waterlogging dynamics over different seasons. An area of 594.36 km2 (6.75%) and 4.17 km2 (0.04%) was affected by surface waterlogging during pre and postmonsoon season, respectively. The average annual groundwater level fluctuations were calculated using 18 years (1990–2007) pre and postmonsoon groundwater level data to identify the areas which are under groundwater induced waterlogging conditions. The soil map clearly indicates that salinity and sodicity exhibit the highest severity and occur in areas with shallow groundwater levels. The hydrogeomorphical units mapped using IRS P6 LISS III satellite images are flood plain, alluvial plain, paleochannels, and oxbow lakes. The study revealed that 44.65% areas have very good to excellent groundwater resources. The litholog data clearly indicate an alternating sequence of clay and sand in which deep aquifers made up of coarse sand would be best suited for adequate water supply and good groundwater quality. The integrated study utilizing digital spatial data pertaining to waterlogging, soil salinity, water level fluctuation, and lithological variation proved that planning of any surface and subsurface water resources development activity should be taken up after assessments of said parameters.  相似文献   

16.
区域节水效果的常规评价方法都是利用单项指标评价单一行业的或者单方面的节水效果,不能反映区域综合节水效果.本文从耗水控制水平和地下水可持续利用的角度出发,提出了以目标蒸散量(ET)和地下水位理论变幅为评价基准,利用遥感技术监测区域实际蒸散量和地下水位实际变幅,采用基准比较法评价区域节水综合效果的方法;并以北京市大兴区为例...  相似文献   

17.
This study attempts to use the geographic information system (GIS) technique to map and understand the tectonics and crustal structures of Pakistan. Maps of surficial tectonic features and seismological parameters including Moho depth, Pn velocity and Pg velocity are complied. Based on the seismological data-set of the country the earthquake hazard map of Pakistan is also presented by applying regression technique on seismological, geological and topographical parameters. A case study of 8 October 2005 earthquake is used to validate the hazard map. It is envisaged that the developed GIS database would help policy-makers and scientists in natural hazard evaluation, seismic risk assessment and understanding of earthquake occurrences in Pakistan.  相似文献   

18.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

19.
数学精度的检验是测绘成果质量检验中的重要内容之一。针对在通常采用的野外实地检测模式下,地理空间信息位置数学精度检测工作量大、成本高等问题,该文根据海岛(礁)测图成果特点,提出了桩点法代替野外实地检测的技术方法。通过进行实测试验,解决野外难以获取足够检测点的问题;同时,采用试验结果,对海岛(礁)测图成果数学精度检测进行了验证,结果表明该方法在一定程度上能减少野外工作量,提高工作效率。  相似文献   

20.
Mineral resource potential mapping is a complex analytical process,which requires the consideration and the inte-gration of a number of spatial evidences like geological,geomorphological,and wall rock alteration.The aim of this paper is to establish mineral exploration model for copper,lead,and zinc in Lanping basin area using the capability of analytical tools of Geographic Information System(GIS) and remote sensing data to generate maps showing favorable mineralized area.The geo-exploration dataset used f...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号