首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An incoherent broad-band frequency (100-200 Hz) domain Bartlett processor is applied to the wide-band source (WBS) signals for source localization. The coupled normal mode-parabolic equation theory based on the WKBZ approximation is used to calculate the replica fields in the sloping bottom environment. The experimental analysis shows that the accuracy of the source localization is largely improved with the consideration of the slope of bottom. The range estimates of the majority of signals by localized by matched-field processing in the range from 30.0 to 50.0 km are consistent with the global positioning system measured ranges.  相似文献   

2.
Matched-field ambiguity surfaces produced by deep-water ambient-noise data are discussed and quantified in terms of power levels and correlation values. Two processors were implemented (Bartlett and minimum variance) using data at 35 and 95 Hz with similar but distinct vertical angular distributions. In general, the ambiguity surfaces have both diffuse and discrete components. The diffuse distribution extends across the sound channel with correlation values increasing with distance. The discrete sources have higher correlation values and are distributed in a convergence-zone sidelobe structure. Local wind conditions appear to affect the received power but not the correlation values or the processor output power  相似文献   

3.
Long-range source localization is shown to be affected by a mesoscale eddy whose realization is solely a cyclonic current (no thermal manifestation). The sensitivity of a matched-field type processor (known ocean) to an eddy is demonstrated, as well as its sensitivity to a mismatch between the parameters of the eddy and the processor assumptions. Optimum uncertain field processing techniques are used to overcome these sensitivities by incorporating uncertainties about the environment into the processor. These processors operate on data produced by a special 3-D ray tracer using actual sound speed data and two different models for eddy current structure  相似文献   

4.
In this paper, a new approach to the design of broad-band time-domain element space antenna array processors is presented. The basic approach is based on the idea of minimizing the mean-square deviation between the desired look-direction response and the response of the processor over a frequency band of interest. With this approach, three types of presteering can be handled: no presteering, coarse presteering, and exact presteering. The elimination of presteering lime delays is important in a digital implementation of antenna array processors. The relationship that the new processor has to other broad-band processors is explored and the significance of the parameters associated with the new processor is established. Furthermore, the approach presented enables various types of errors and mismatches between signal model and actual scenario to be incorporated in the problem formulation.  相似文献   

5.
In the Hudson Canyon experiment, a sound source moved at a constant depth in 73 m of water while transmitting four tonals. The signal was received on a vertical array of hydrophones that spanned the water column. The data set from this experiment has become a standard test case for studying source tracking using matched field processing. As part of that process it was important to first determine a suitable environment model and demonstrate the feasibility of matched-field processing. In this paper, we provide the background on the original data processing that was done to accomplish this. Several interesting results emerged from that study. Frequency averaging was demonstrated to be extremely beneficial when used with the Bartlett processor. However, the popular Minimum Variance processor performed poorly. Finally we discuss a very simple approach to combining the energy coherently that provided significantly improved results.  相似文献   

6.
A model-based approach to solve a deep water ocean acoustic signal processing problem based on a state-space representation of the normal-mode propagation model is developed. The design of a model-based processor (MBP) for signal enhancement employing an array consisting of a large number of sensors for a deep ocean surveillance operation is discussed. The processor provides enhanced estimates of the measured pressure-field, modes, and residual (innovations) sequence indicating the performance or adequacy of the propagation model relative to the data. It is shown that due to the structure of the normal-mode model the state-space propagator is not only feasible for this large scale problem, but in fact, can be implemented by a set of decoupled parallel second-order processors, implying a real-time capability. In the paper we discuss the design and application of the processor to a realistic set of simulated pressure-field data developed from a set of experiments and sound speed parameters  相似文献   

7.
The advanced WISPR summation (AWSUM) filter, a natural extension of the WISPR filter for higher filter order numbers, is presented and its performance is compared to the performance of the WISPR filter and the conventional summation processor. It is shown that the AWSUM filter achieves substantial gains in various measures of processor performance above those of the other two processors in spatial and spectral resolution, minimum detectable level (MDL), clutter reduction, and signal-to-noise ratio (SNR) gain. The important processing parameters are shown to be the percentage of overlap of the voltage time series and the number of FFT's averaged. SNR gains in excess of 20 dB were shown to be achievable for low-fluctuation amplitude tonals using measured data  相似文献   

8.
We examined the interannual variability of Pacific Winter Water (PWW), both upstream in the northeastern Chukchi Sea and Barrow Canyon using mooring observations from 2000 to 2006, and downstream in the Canada Basin using hydrographic data acquired in 2002–2006. The interannual variation of PWW salinity is governed by two factors: (1) variability in the salinity of Pacific Water that flows northward through Bering Strait in winter; and (2) the input of salt associated with sea ice formation during winter in an intermittent coastal polynya located along the Alaskan coast between Cape Lisburne and Point Barrow. During the winters of 2000/2001 and 2001/2002 an increased transport of cold and saline PWW (S?>?33.5) to the basin via Barrow Canyon was observed. In 2000/2001 enhanced ice formation in the polynya contributed to the increased salinity of PWW, whereas in 2001/2002 the salinity of water entering through the Bering Strait was higher, and this resulted in more saline PWW being delivered to the basin. In the following four winters (2002/2003, 2003/2004, 2004/2005 and 2005/2006) the transport of cold and saline PWW in winter to the basin was less than that in the two preceding winters. In three of these four winters (2003/2004 being the exception) the coastal polynya was less active, thus reducing the input of salt due to brine enrichment. In the winter of 2003/2004, however, warmer water within the polynya region constrained ice formation and thus less cold and saline PWW was produced, despite the fact that the coastal polynya was active and frequently open.  相似文献   

9.
Passive sonar systems that localize broadband sources of acoustic energy estimate the difference in arrival times (or time delays) of an acoustic wavefront at spatially separated hydrophones, The output amplitudes from a given pair of hydrophones are cross-correlated, and an estimate of the time delay is given by the time lag that maximizes the cross correlation function. Often the time-delay estimates are corrupted by the presence of noise. By replacing each of the omnidirectional hydrophones with an array of hydrophones, and then cross-correlating the beamformed outputs of the arrays, the author shows that the effect of noise on the time-delay estimation process is reduced greatly. Both conventional and adaptive beamforming methods are implemented in the frequency domain and the advantages of array beamforming (prior to cross-correlation) are highlighted using both simulated and real noise-field data. Further improvement in the performance of the broadband cross-correlation processor occurs when various prefiltering algorithms are invoked  相似文献   

10.
Selection of replica fields that are most like the data, i.e., the nearest neighbors (NNs) to the data, offers a way of reducing the computational search space in matched-field processing, thereby making larger physical search spaces or a larger number of frequencies practical. To enable selection of NNs a vector basis for the search space is required. The authors use the large eigenvectors of the covariance matrix for uncorrelated sources spread over the search region. This is not only a suitable vector basis of the search space, but also results in a dimensional reduction from the full set of eigenvectors, with a further computational saving. The replica vectors for the search region are partitioned by finding their projection on this vector basis. One can then select for matching only those replicas with similar squared projections on the vector basis. This selection process carries a modest cost in computing overhead, provided that the code, the partitioning, and the replica selection parameters are optimized. The detection performance and false alarm probability for the Bartlett beamformer, with and without selection of the replicas, were estimated from simulations of noisy data received on a vertical line array at practical time-bandwidth products. An order of magnitude speedup was obtained  相似文献   

11.
A theoretical model for the vertical directionality and depth dependence of high frequency (8 to 50 kHz) ambient noise in the deep ocean is developed. The anisotropic noise field at a variety of depths and frequencies is evaluated and displayed. It was found that at high frequencies and deep depths, a bottom-mounted hydrophone receives the maximum noise energy from overhead rather than from the horizontal. This leads to the consideration of an oblate hydrophone receiving response pattern for underwater tracking ranges that would provide a constant signal-to-noise ratio (SNR) for an acoustic source located anywhere in a circular area centered above the hydrophone. Two of the desirable characteristics of this type of pattern are the increase in receiving range of a bottom-mounted sensor and the decrease of the dynamic range of signals that a signal processor must handle.  相似文献   

12.
This paper describes results from an experiment carried out to investigate geoacoustic inversion with a bottom-moored hydrophone array located in the shallow waters of the Timor Sea off the northern coast of Australia. The array consisted of two arms in a V shape, horizontally moored at a site that was essentially flat over a large area. Hydrophone positions were estimated using an array element localization (AEL) technique that established relative uncertainties of less than 1 m on the seafloor. The data used for geoacoustic inversion were from experiments with continuous wave (CW) tones in the 80- to 195-Hz band transmitted from a towed projector. A hybrid search algorithm determined the set of geoacoustic model parameters that maximized the Bartlett fit (averaged coherently spatially at each tone and incoherently over frequency) between the measured and modeled data at the array. Due to the long range experimental geometry, the inversion was sensitive to attenuation in the sediment. The inverted geoacoustic profile performed well in a simple test for localizing the sound source at other sites in the vicinity of the array. Range-depth localization performance for the horizontal array was comparable to that for an equivalent vertical array.  相似文献   

13.
We deployed semipermeable membrane devices (SPMDs) on beaches for 28 days at 53 sites in Prince William Sound (PWS), Alaska, to evaluate the induction potential from suspected sources of cytochrome P450 1A (CYP1A)-inducing contaminants. Sites were selected to assess known point sources, or were chosen randomly to evaluate the region-wide sources. After deployment, SPMD extracts were analyzed chemically for persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAH). These results were compared with hepatic CYP1A enzyme activity of juvenile rainbow trout injected with the same extracts prior to clean-up for the chemical analyses. Increased CYP1A activity was strongly associated with PAH concentrations in extracts, especially chrysene homologues but was not associated with POPs. The only apparent sources of chrysene homologues were lingering oil from Exxon Valdez, asphalt and bunker fuels released from storage tanks during the 1964 Alaska earthquake, creosote leaching from numerous pilings at one site, and PAH-contaminated sediments at Cordova Harbor. Our results indicate that PWS is remarkably free of pollution from PAH when nearby sources are absent as well as from pesticides and PCBs generally.  相似文献   

14.
We deployed semipermeable membrane devices (SPMDs) on beaches for 28 days at 53 sites in Prince William Sound (PWS), Alaska, to evaluate the induction potential from suspected sources of cytochrome P450 1A (CYP1A)-inducing contaminants. Sites were selected to assess known point sources, or were chosen randomly to evaluate the region-wide sources. After deployment, SPMD extracts were analyzed chemically for persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAH). These results were compared with hepatic CYP1A enzyme activity of juvenile rainbow trout injected with the same extracts prior to clean-up for the chemical analyses. Increased CYP1A activity was strongly associated with PAH concentrations in extracts, especially chrysene homologues but was not associated with POPs. The only apparent sources of chrysene homologues were lingering oil from Exxon Valdez, asphalt and bunker fuels released from storage tanks during the 1964 Alaska earthquake, creosote leaching from numerous pilings at one site, and PAH-contaminated sediments at Cordova Harbor. Our results indicate that PWS is remarkably free of pollution from PAH when nearby sources are absent as well as from pesticides and PCBs generally.  相似文献   

15.
Herber  R.  Grevemeyer  I.  Exner  O.  Villinger  H.  Weigel  W. 《Marine Geophysical Researches》1998,20(3):239-247
Bottom shots have been used for a number of years in seismic studies on the ocean floor. Most experiments utilized explosives as the energy source, though researchers have recognized the usefulness of collapsing water voids to produce seismoacoustic signals. Implosive sources, however, suffered generally from a lack of control of source depth. We present a new experimental tool, called SEEBOSEIS, to carry out seismic experiments on the seafloor utilizing hollow glass spheres as controlled implosive sources. The source is a 10-inch BENTHOS float with penetrator. Inside the sphere we place a small explosive charge (two detonators) to destabilize the glass wall. The time of detonation is controlled by an external shooting device. Test measurements on the Ninetyeast Ridge, Indian Ocean, show that the implosive sources can be used in seismic refraction experiments to image the subbottom P-wave velocity structure in detail beyond that possible with traditional marine seismic techniques. Additionally, the implosions permit the efficient generation of dispersed Scholte waves, revealing upper crustal S-wave velocities. The frequency band of seismic energy ranges from less than 1 Hz for Scholte modes up to 1000 Hz for diving P-waves. Therefore, broadband recording units with sampling rates >2000 Hz are recommended to sample the entire wave field radiated by implosive sources.  相似文献   

16.
In October 1997, the EnVerse 97 shallow-water acoustic experiments were jointly conducted by SACLANT Centre, TNO-FEL, and DERA off the coast of Sicily, Italy. The primary goal of the experiments was to determine the sea-bed properties through inversion of acoustic data. Using a towed source, the inversion method is tested at different source/receiver separations in an area with a range-dependent bottom. The sources transmitted over a broadband of frequencies (90-600 Hz) and the signals were measured on a vertical array of hydrophones. The acoustic data were continuously collected as the range between the source and receiving array varied from 0.5 to 6 km. An extensive seismic survey was conducted along the track providing supporting information about the layered structure of the bottom as well as layer compressional sound speeds. The oceanic conditions were assessed using current meters, satellite remote sensing, wave height measurements, and casts for determining conductivity and temperature as a function of water depth. Geoacoustic inversion results taken at different source/receiver ranges show sea-bed properties consistent with the range-dependent features observed in the seismic survey data. These results indicate that shallow-water bottom properties may be estimated over large areas using a towed source fixed receiver configuration  相似文献   

17.
This application-oriented paper presents comparison of various broadband frequency based structural damage localization indices using experimental data from a full-scale structure known as the I-40 Bridge. First, three ‘damage-sensitive’ response parameters determined in the time and/or spectral domain, modal domain and wavelet domain are presented for damage localization in the context of a ‘non-model-based’ damage identification approach. Secondly, experimental modal data (namely natural frequencies, mode shapes and modal damping) obtained from this full-scale bridge subjected to various damage conditions is employed for assessment of the robustness of these methods on ‘real-world’ applications. Consequently, the results obtained are compared with those obtained from existing resonance frequency based damage identification methods. The results obtained demonstrate the improved capability of the broadband methods to localize damage in a full-scale structure despite sparse modal information and limited measurement grid points.  相似文献   

18.
This paper describes results from geoacoustic inversion of low-frequency acoustic data recorded at a receiving array divided into two sections, a sparse bottom laid horizontal array (HLA) and a vertical array (VLA) deployed in shallow water. The data are from an experiment conducted by the Norwegian Defence Research Establishment (FFI) in the Barents Sea, using broadband explosives (shot) sources. A two-layer range-independent geoacoustic model, consistent with seismic profiles from the area, described the environment. Inversion for geoacoustic model parameters was carried out using a fast implementation of the hybrid adaptive simplex simulated annealing (ASSA) inversion algorithm, with replica fields computed by the ORCA normal mode code. Low-frequency (40-128 Hz) data from six shot sources at ranges 3-9 km from the array were considered. Estimates of sediment and substrate p-wave velocities and sediment thickness were found to be consistent between independent inversions of data from the two sections of the array.  相似文献   

19.
A new version of the ocean data assimilation system (ODAS) developed at the Hydrometcentre of Russia is presented. The assimilation is performed following the sequential scheme analysis–forecast–analysis. The main components of the ODAS are procedures for operational observation data processing, a variational analysis scheme, and an ocean general circulation model used to estimate the first guess fields involved in the analysis. In situ observations of temperature and salinity in the upper 1400-m ocean layer obtained from various observational platforms are used as input data. In the new ODAS version, the horizontal resolution of the assimilating model and of the output products is increased, the previous 2D-Var analysis scheme is replaced by a more general 3D-Var scheme, and a more flexible incremental analysis updating procedure is introduced to correct the model calculations. A reanalysis of the main World Ocean hydrophysical fields over the 2005–2015 period has been performed using the updated ODAS. The reanalysis results are compared with data from independent sources.  相似文献   

20.
The purpose of this paper is to develop a decision-feedback equalizer (DFE) using a fixed set of parameters applicable to most shallow oceans with minimal user supervision (i.e., a turn key system). This work is motivated by the superior performance [bit error rate (BER)] of the multichannel DFE compared with other methods, such as passive-phase conjugation (PPC), at the same time noting its sensitivity to different acoustic environments. The approach is to couple PPC, utilizing its adaptability to different environments, with a single-channel DFE. This coupling forms an optimal processor for acoustic communications in theory, but it has never been implemented in practice. By coupling with DFE, the method achieves the same spatial diversity as conventional multichannel DFE, without requiring a large number of receivers as does PPC. The correlation-based DFE in terms of the autocorrelation functions of the channel impulse responses summed over the receiver channels (the Q function) is derived. This paper shows in terms of waveguide physics, further supported by real data, the many desirable features of the Q function that suggest, given adequate sampling of the water column, a general applicability of the correlation-based equalizer to different environments, irrespective of the sound speed profiles, bottom properties, and source-receiver ranges/depths. This property can be expected to hold approximately for a small number of receivers with spatial diversity. This paper demonstrates the robustness of the new equalizer with moving source data despite the range change (which modifies the impulse response) and symbol phase change due to time-varying Doppler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号