首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the potential environmental consequences of dumped dredged harbour sediments it is vital to establish the potential risks from exposure before disposal at sea. Currently, European legislation for disposal of contaminated sediments at sea is based on chemical analysis of a limited number of well-known contaminants for which maximum acceptable concentrations, action levels (ALs), have been set. The present paper addresses the issue of the applicability of in vitro and in vivo bioassays for hazard, risk and local impact assessment of dredged polluted sediments to be disposed of at sea. It discusses how and to what extent selected bioassays can fill in the gaps left open by chemical analysis and the way in which the bioassays may contribute to the present licensing system for disposal. Three different purposes for application were distinguished: the most basic application (A) is a rapid determination of the hazard (potential toxicity) of dredged sediments which is then compared to ALs in a licensing system. As with chemical analysis on whole sediment extracts, the bioavailability of the chemicals is not taken into account. As in vitro assays with sediment extracts are not sensitive to matrix effects, a selection of specific in vitro bioassays can be suitable fast and standardized additions for the licensing system. When the outcome of (A) does not convincingly demonstrate whether the sediment is clean enough or too polluted, further bioanalysis can help the decision making process (B). More aspects of the mostly unknown complex chemical mixtures are taken into account, including the bioavailability and chronic toxicity focusing on ecologically relevant endpoints. The ecotoxicological pressure imposed by the dredged sediments can be quantified as the potentially affected fraction (PAF) based on chemical or biological analysis of levels of contaminants in sediment or biota. To validate the predicted risk, the actual impact of dumped harbour sediments on local ecosystems (C) can be determined using a dedicated set of in vitro and in vivo bioassays as well as bio-indicators selected based on the information obtained from (A) and (B) and on the characteristics of the local ecosystem. Conversely, the local sediment impact assessment (C) can direct fine-tuning of the selection of chemical and bioassay analyses and for setting safe levels in the licensing system. It is concluded that in vitro and in vivo bioassays and biological indicators are useful tools in the process of hazard, ecotoxicological risk and impact assessment of dredged harbour sediments, provided they are consciously chosen and quality criteria for assay performance are defined.  相似文献   

2.
Dredging and remediation of contaminated Harbor sediments requires characterization of organic pollutants. In this paper, we apply a combination of Fourier transform IR attenuated total reflectance (FTIR‐ATR) and synchrotron FTIR techniques to the investigation of sediments and related materials from New York/New Jersey Harbor and other locations. The FTIR techniques give information on the functional groups of the compounds found in the sediments and make possible measurements with a spatial resolution of about 0.015 mm. Comparisons of natural organic materials namely, river and groundwater humic substances, recent marine and lacustrine sediments, and ancient sedimentary kerogen show that contaminated NY/NJ Harbor sediments display a strong and distinct absorption in their IR spectra at 2850–2950 cm?1 identified as a C? H stretching band, indicative of the presence of anthropogenic hydrocarbons. We suggest that the presence of this band could be used for rapid screening for the presence of contaminant organic compounds in sediments encountered in dredging operations and/or as an indicator for the efficacy of sediment decontamination technologies used for treatment of dredged material.  相似文献   

3.
Agricultural subsurface drainage waters containing nutrients (nitrate/phosphate) and pesticides are discharged into neighboring streams and lakes, frequently producing adverse environmental impacts on local, regional, and national scales. On‐site drainage water filter treatment systems can potentially prevent the release of agricultural contaminants into adjacent waterways. Zero valent iron (ZVI) and sulfur‐modified iron (SMI) are two types of promising filter materials that could be used within these treatment systems. Therefore, water treatment capabilities of three ZVI and three SMI filter materials were evaluated in the laboratory. Laboratory evaluation included saturated falling‐head hydraulic conductivity tests, contaminant removal batch tests, and saturated solute transport column experiments. The three ZVI and the three SMI filter materials, on average, all had a sufficient hydraulic conductivity greater than 1 × 10–3 cm/s. Batch test results showed a phosphate decrease of at least 94% for all tests conducted with the ZVI and SMI. Furthermore, the three SMI filter materials removed at least 86% of the batch test nitrate originally present, while batch tests for one of the ZVI filter materials exhibited an 88% decrease in the pesticide, atrazine. Saturated solute transport column experiments were carried on the best ZVI filter material, or the best SMI filter material, or both together, in order to better evaluate drainage water treatment effectiveness and efficiency. Results from these column tests additionally document the drainage water treatment ability of both ZVI and SMI to remove the phosphate, the ability of SMI to remove nitrate, and the ability of a select ZVI material to remove atrazine. Consequently, these findings support further investigation of ZVI and SMI subsurface drainage water treatment capabilities, particularly in regard to small‐ and large‐scale field tests.  相似文献   

4.
Capping with layers of inert or adsorptive materials is used to control the release of polycyclic aromatic hydrocarbons(PAH)in sediment but little is known about microbial degradation processes in these materials.A rich native microbial community inhabits the sediment bed,and capping media can influence enrichment and biodegradation activity of benthic microorganisms.The aim of this study was to evaluate the effects of capping media(sand,organoclay,and powdered activated carbon[PAC])on microbial communities under oxic conditions typical of the capewater interface,where naphthalene degradation(model PAH)is likely to be maximized.Bench scale experiments compared naphthalene concentrations,nahAc biomarker abundance,microbial community composition,and cellular attachment in systems amended with adsorptive and non-adsorptive capping materials.Results indicate that activated carbon promoted and enhanced bioactivity;PAC treatments showed high biodegradation rates,nahAc biomarker levels,and attached biological growth consistent with enrichment of the PAHdegrading genus Pseudomonae.In contrast,sand did not enhance biological activity compared to media-free systems.Naphthalene strongly influenced microbial community composition at the species level in all treatments except organoclay,which promoted biological signatures commonly associated with impeding degradation activity.Data overall suggest that adsorptive capping materials can both promote(PAC)and inhibit(organoclay)bioactivity in the surficial layer of caps,indicating that media selection is critical to the design of bioactive capping systems.  相似文献   

5.
The spatial moments of a contaminant plume undergoing bio-attenuation are coupled to the moments of microbial populations effecting that attenuation. In this paper, a scalable inverse method is developed for estimating field-scale Monod parameters such as the maximum microbial growth rate (μmax), the contaminant half saturation coefficient (Ks), and the contaminant yield coefficient (Ys). The method uses spatial moments that characterize the distribution of dissolved contaminant and active microbial biomass in the aquifer. A finite element model is used to generate hypothetical field-scale data to test the method under both homogeneous and heterogeneous aquifer conditions. Two general cases are examined. In the first, Monod parameters are estimated where it is assumed a microbial population comprised of a single bacterial species is attenuating one contaminant (e.g., an electron donor and an electron acceptor). In a second case, contaminant attenuation is attributed to a microbial consortium comprised of two microbial species, and Monod parameters for both species are estimated. Results indicate the inverse method is only slightly sensitive to aquifer heterogeneity and that estimation errors decrease as the sampling time interval decreases with respect to the groundwater travel time between sample locations. Optimum conditions for applying the scalable inverse method in both space and time are investigated under both homogeneous and heterogeneous aquifer conditions.  相似文献   

6.
《Marine pollution bulletin》2017,114(1):384-396
We investigated benthic foraminiferal assemblages in contaminated sediments in a subarctic harbor of Northern Norway to assess their utility as indicators of anthropogenic impacts. Sediments in the harbor are repositories for POPs and heavy metals supplied through discharges from industry and shipping activities. Sediment contaminant concentrations are at moderate to poor ecological quality status (EcoQS) levels. The EcoQS based on benthic foraminiferal diversity reflects a similar trend to the EcoQS based on contaminant concentrations. Foraminiferal density and diversity is low throughout the harbor with distinct assemblages reflecting influence of physical disturbances or chemical stressors. Assemblages impacted by physical disturbance are dominated by L. lobatula and E. excavatum, while assemblages impacted by chemical stressors are dominated by opportunistic species S. fusiformis, S. biformis, B. spathulata and E. excavatum. The foraminiferal assemblage from an un-impacted nearby fjord consists mainly of agglutinated taxa. These assemblages provides a valuable baseline of the ecological impacts of industrialization in northern coastal communities.  相似文献   

7.
湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟   总被引:5,自引:2,他引:3  
选取太湖梅梁湾污染底泥为研究对象,利用沉积物再悬浮发生装置,通过室内模拟实验研究太湖夏季常规风情下底泥疏浚对沉积物再悬浮及上覆水营养盐动态变化的影响.结果表明,在模拟的风情扰动过程结束时(5 h),扰动过程未疏浚与疏浚处理水柱总悬浮颗粒物(TSS)含量变化差异显著,未疏浚对照水柱TSS含量是初始值的7.7倍,而疏浚水柱TSS在第2 h达到峰值,为初始值的3.8倍;未疏浚水柱TSS含量沉降过程最初1 h迅速降低了84.0%,而疏浚水柱TSS含量在沉降3 h后趋于平衡.伴随着沉积物的再悬浮过程,疏浚与未疏浚对照水柱中TP含量均在第5 h达到最大,分别增加负荷78.6和92.2 mg/m2.就短时效而言,底泥疏浚后沉积物的再悬浮过程显著受到抑制,并能够显著地减小沉积物再悬浮过程中溶解性磷酸盐的释放;但对水柱中总磷、总氮、铵氮、硝酸盐和亚硝酸盐含量变化影响较小.  相似文献   

8.
A finite element 2D Monte Carlo approach is used to evaluate the sensitivity of groundwater contaminant discharges to a Damkohler number ω and spatial variability in aquifer hydraulic conductivity, initial microbial biomass concentrations, and electron acceptor/donor concentrations. Bioattenuation is most sensitive to spatial variations in incipient biomass and critical electron donors/acceptors for ω ≥ 1 (i.e., when pore-water residence times are high compared to the time needed for microbial growth or contaminant attenuation). Under these conditions, critical reaction processes can become substrate-limited at multiple locations throughout the aquifer; which in turn increases expected contaminant discharges and their uncertainties at monitored transects. For ω ≤ 0.2, contaminant discharge is not sensitive to incipient biomass variations. Physical heterogeneities expedite plume arrival and delay departure at transects and in turn attenuate peak discharges but do not affect cumulative contaminant discharges. Physical heterogeneities do, however, induce transect mass discharge variances that are bimodal functions of time; the first peak beings consistently higher. A simple stream tube model is invoked to explain the occurrence of peaks in contaminant discharge variance.  相似文献   

9.
《Advances in water resources》2007,30(6-7):1583-1592
A major problem preventing widespread implementation of microbial injection strategies for bioremediation and/or microbially enhanced oil recovery is the tendency of bacteria to strongly adhere to surfaces in the immediate vicinity of the injection point. Long term (weeks to months) nutrient starvation of bacteria prior to injection can decrease attachment and enhance transport through porous media. This paper summarizes results of starvation-enhanced transport experiments in sand columns of 30 cm, 3 m, and 16 m in length. The 16 m column experiments compared transport, breakthrough and distribution of adhered cells for starved and vegetative cultures of Klebsiella oxytoca, a copious biofilm producer. Results from these experiments were subsequently used to design and construct a field-scale biofilm barrier using starved Pseudomonas fluorescens. The 30 cm and 3 m sand columns experiments investigated starvation-enhanced transport of Shewanella algae BrY, a dissimilatory metal-reducing bacterium. In both cases the vegetative cells adsorbed onto the sand in higher numbers than the starved cells, especially near the entrance of the column. These results, taken together with studies cited in the literature, indicate that starved cells penetrate farther (i.e. higher breakthrough concentration) and adsorb more uniformly along the flow path than vegetative cells.  相似文献   

10.
《Marine pollution bulletin》2012,64(5-12):548-555
To investigate the potential for enantioselective transformation and accumulation, the enantiomer distributions of seven polychlorinated biphenyl (PCB) atropisomers were measured in the sediment and biota from a sub-tropical estuary heavily contaminated with Aroclor 1268, a technical mixture of highly chlorinated PCB congeners. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, 176, and 183 in marsh sediment, invertebrate, forage and predatory fish species, and bottlenose dolphins were determined. Non-racemic EFs greater than 0.75 were found in sediments for PCBs 136 and 174, likely the result of microbial dechlorination. Although enantiomer fractions in grass shrimp (Palaemonetes spp.) mirrored those of sediment, fish species had EFs that differed significantly from sediment or grass shrimp. Similarly, bottlenose dolphins were also found to contain non-racemic quantities of PCBs 91, 136, 174, 176, and 183. Non-racemic EFs in these biota were likely a result of both uptake of non-racemic proportions of PCBs from the diet and enantioselective biotransformation.  相似文献   

11.
Barite particles are a universal component of suspended matter in the Atlantic and Pacific Oceans. This is demonstrated by scanning electron microscope and electron microprobe analyses of samples collected during the GEOSECS program. These discrete particles, about 1 μm in diameter, account for by far the greatest part of the total particulate barium of most of the filters collected at different depths. Total particulate barium (mean value: 20 ng/kg seawater) was measured on the same filters by instrumental neutron activation analysis.Several observations indicate that biochemical, rather than purely chemical, processes are involved in the formation of the BaSO4 mineral in the water column. Sr/Ba molar ratios among the individual barite grains, particularly from surface waters are extremely variable, which would not be anticipated for purely chemical interactions. Barite crystals occurring within fecal debris have been observed throughout the water column. Within such debris decomposition of the abundant organic matter may provide the micro-environment predicted as necessary for the precipitation of BaSO4. Finally, a strong correlation between nutrient content and particulate barium is found in the upper 1000 m of the water column, which also suggests a control of barite formation by biota.Some of the barite dissolves at depth in the water column. Dissolution rates were calculable for two GEOSECS stations, from which a dissolved barium flux of 0.4 μg/cm2 yr was deduced. This figure is of the same order as the dissolved barium flux calculable from the barium content and known dissolution rates of calcareous and siliceous tests: approximately 0.5 μg/cm2 yr. These fluxes represent the largest source of dissolved barium in the water column, the other being river input (0.6 μg/cm2 yr). This supports the contention that the barium in the water column is mostly recycled. The residual flux of barite-Ba reaching the sea floor is of about equal importance as the flux of barium associated with fast-settling fecal material. These two sources together are almost sufficient to account for the total sedimentation rate of barium.  相似文献   

12.
Numerous pits in coastal waters are subject to degraded water quality and benthic habitat conditions, resulting in degraded fish habitat. A pit in Barnegat Bay, New Jersey (USA) was partially filled with dredged sediment to increase flushing, alleviate hypoxia, and enhance benthic assemblages. Restoration objectives were assessed in terms of benthic community parameters and fishery resource occupation. Restoration resulted in increased benthic diversity (bottom samples) and the absence of water column stratification. Fisheries resources occupied the entire water column, unlike pre-restoration conditions where finfish tended to avoid the lower water column. The partial restoration option effectively reproduced an existing borrow pit configuration (Hole #5, control), by decreasing total depth from −11 m to −5.5 m, thereby creating a habitat less susceptible to hypoxic/anoxic conditions, while retaining sufficient vertical relief to maintain associations with juvenile weakfish and other forage fishes. Partially filling pits using dredged material represents a viable restoration alternative.  相似文献   

13.
MIN3P, a multicomponent reactive transport model for variably saturated porous media, is used to simulate the outputs of column tests carried out using zero valent iron (ZVI) for nickel contaminated groundwater remediation. The objective of this study is to investigate the main chemical reactions involved in contaminant removal and the main causes of the reactivity decline of ZVI over time. According to the results of the model the major causes of ZVI reactivity loss is identified in the mineral precipitation of α‐FeOOH on iron surface that probably caused ZVI passivation and led to a decline of the electron transfer rate. An existing empirical relationship between mineral precipitation and the reactivity loss of ZVI, included in the model, reproduced the changes in nickel removal observed during different laboratory column tests.  相似文献   

14.
Microorganisms participate in a variety of geologic processes that alter the chemical and physical properties of their environment. Understanding the geophysical signatures of microbial activity in the environment has resulted in the development of a new sub-discipline in geophysics called “biogeophysics”. This review focuses primarily on literature pertaining to biogeophysical signatures of sites contaminated by light non-aqueous phase liquids (LNAPL), as these sites provide ideal laboratories for investigating microbial-geophysical relationships. We discuss the spatial distribution and partitioning of LNAPL into different phases because the physical, chemical, and biological alteration of LNAPL and the subsequent impact to the contaminated environment is in large part due to its distribution. We examine the geophysical responses at contaminated sites over short time frames of weeks to several years when the alteration of the LNAPL by microbial activity has not occurred to a significant extent, and over the long-term of several years to decades, when significant microbial degradation of the LNAPL has occurred. A review of the literature suggests that microbial processes profoundly alter the contaminated environment causing marked changes in the petrophysical properties, mineralogy, solute concentration of pore fluids, and temperature. A variety of geophysical techniques such as electrical resistivity, induced polarization, electromagnetic induction, ground penetrating radar, and self potential are capable of defining the contaminated zones because of the new physical properties imparted by microbial processes. The changes in the physical properties of the contaminated environment vary spatially because microbial processes are controlled by the spatial distribution of the contaminant. Geophysical studies must consider the spatial variations in the physical properties during survey design, data analysis, and interpretation. Geophysical data interpretation from surveys conducted at LNAPL-contaminated sites without a microbial and geochemical context may lead to ambiguous conclusions.  相似文献   

15.
The fate and transport of groundwater contaminants depends partially on groundwater velocity, which can vary appreciably in highly stratified aquifers. A high-resolution passive profiler (HRPP) was developed to evaluate groundwater velocity, contaminant concentrations, and microbial community structure at ∼20 cm vertical depth resolution in shallow heterogeneous aquifers. The objective of this study was to use mass transfer of bromide (Br), a conservative tracer released from cells in the HRPP, to estimate interstitial velocity. Laboratory experiments were conducted to empirically relate velocity and the mass transfer coefficient of Br based on the relative loss of Br from HRPP cells. Laboratory-scale HRPPs were deployed in flow boxes containing saturated soils with differing porosities, and the mass transfer coefficient of Br was measured at multiple interstitial velocities (0 to 100 cm/day). A two-dimensional (2D) quasi-steady-state model was used to relate velocity to mass transfer of Br for a range of soil porosities (0.2–0.5). The laboratory data indicate that the mass transfer coefficient of Br, which was directly—but non-linearly—related to velocity, can be determined with a single 3-week deployment of the HRPP. The mass transfer coefficient was relatively unaffected by sampler orientation, length of deployment time, or porosity. The model closely simulated the experimental results. The data suggest that the HRPP will be applicable for estimating groundwater velocity ranging from 1 to 100 cm/day in the field at a minimum depth resolution of 10 cm, depending on sampler design.  相似文献   

16.
通过为期一年的疏浚模拟试验,在试验室培养疏浚与对照柱样研究了底泥疏浚对沉积物微生物活性和群落功能多样性的影响。研究结果表明,太湖梅梁湾研究区模拟疏浚表层30cm对沉积物物理、化学和微生物性质影响较大。疏浚沉积物微生物活性显著低于未疏浚沉积物的微生物活性,疏浚对沉积物微生物活性影响较大且在一年的试验周期内难以恢复。底泥疏浚对沉积物微生物功能多样性产生影响,疏浚后初期新生表层沉积物的微生物群落多样性指数显著低于未疏浚沉积物,底泥疏浚改变了沉积物中微生物群落组成,并会导致微生物群落功能多样性降低。底泥疏浚对微生物活性与微生物群落功能多样性产生影响,从而对沉积物中生源要素的循环产生影响。  相似文献   

17.
In Situ Biorestoration as a Ground Water Remediation Technique   总被引:1,自引:0,他引:1  
In situ biorestoration, where applicable, is indicated as a potentially very cost-effective and environmentally acceptable remediation technology. Many contaminants in solution in ground water as well as vapors in the unsaturated zone can be completely degraded or transformed into new compounds by naturally occurring indigenous microbial populations. Undoubtedly, thousands of contamination events are remediated naturally before the contamination reaches a point of detection. The need is for methodology to determine when natural biorestoration is occurring, the stage the restoration process is in, whether enhancement of the process is possible or desirable, and what will happen if natural processes are allowed to run their course.
In addition to the nature of the contaminant, several environmental factors are known to influence the capacity of indigenous microbial populations to degrade contaminants. These factors include dissolved oxygen, pH, temperature, oxidation-reduction potential, availability of mineral nutrients, salinity, soil moisture, the concentration of specific pollutants, and the nutritional quality of dissolved organic carbon in the ground water.
Most enhanced in situ bioreclamation techniques available today are variations of hydrocarbon degradation procedures pioneered and patented by Raymond and coworkers at Suntech during the period 1974 to 1978. Nutrients and oxygen are introduced through injection wells and circulated through the contaminated zone by pumping one or more producing wells.
The limiting factor in remediation technology is getting the contaminated subsurface material to the treatment unit or units, or in the case of in situ processes, getting the treatment process to the contaminated material. The key to successful remediation is a thorough understanding of the hydrogeologic and geochemical characteristics of the contaminated area.  相似文献   

18.
Protection of the sea has received much political attention—for example, at successive North Sea Conferences environmental ministers have formulated a stringent policy with the aim of reducing pollution in the north-east Atlantic. In the past this area received many substances from many sources, but gradually intergovernmental action since 1972 in the Oslo and Paris Conventions has succeeded in tracing the major sources and understanding the effects of these inputs on the marine environment. After long discussion, many dumpings and discharges have been ended because they were considered harmful to the marine environment. Dredging activities were included in the discussions but they may be regarded as being a special case compared with many other disposals.

In general, clean dredged material for sea disposal offers no problems, although restrictions may be caused by physical impacts, mainly to habitats for living organisms. However, this material also has positive, often even beneficial uses. In contrast, contaminated material disposal is restricted and the internationally accepted rule is that the material should not create hazards to human health, harm living resources and marine life or damage amenities or interfere with other legitimate uses of the sea. There are in principle three options for dealing with polluted sediments: doing nothing, remedial action in situ, removal of the contaminated material; occasionally treatment is a possibility. The distinction has been made between the disposal of industrial waste, sewage sludge or dredged material. Industrial waste disposal is now prohibited; sewage sludge may be dumped until 31 December 1998, although dredged material may still be stored at sea under certain conditions. The Oslo Convention 1972 decided with regard to dredged material: that pollution has to be tackled at the source; dumping at sea is forbidden, although dredged materials may be excluded from this; land disposal prevails, although in several countries there is a growing resistance to disposal on land; there should be a precautionary approach against marine disposal; a stand-still principle should be followed where the quantities disposed in a certain year should not be exceeded nor should the quality of the receiving water be reduced; marine disposal should be phased out and, where appropriate, time-limits set; and the polluter pays.

Dredged material is regarded as polluted and as a consequence may in general not be disposed of at sea when it contains substances listed in the Annexes of the Convention. Exceptions to this are indicated by the terms ‘a trace contaminant’, ‘rapidly rendered harmless’ or ‘significant amounts’. Therefore, to achieve uniformity in the application of the Convention, guidelines have been prepared by a joint London Dumping Convention/Oslo Commission working group of experts on dredged material. Several characteristics must be considered when choosing a site for marine disposal and interests such as beach recreation, sport and commercial fishing, nature, cultural or historical interests, navigation, military interests and cables and pipelines should be taken into account. Also the capacity of the area to assimilate disposed matter per time unit must not be exceeded, especially in low energy areas. It is considered that in discussions of the environmental aspects of dredging it is important that associations such as PIANC argue for safe and economic navigation.  相似文献   


19.
Contaminant intrusion in a water distribution network (DN) has three basic pre-conditions: source of contaminant (e.g., leaky sewer), a pathway (e.g., water main leaks), and a driving force (e.g., negative pressure). The impact of intrusion can be catastrophic if residual disinfectant (chlorine) is not present. To avoid microbiological water quality failure, higher levels of secondary chlorination doses can be a possible solution, but they can produce disinfectant by-products which lead to taste and odour complaints. This study presents a methodology to identify potential intrusion points in a DN and optimize booster chlorination based on trade-offs among microbiological risk, chemical risk and life-cycle cost for booster chlorination. A point-scoring scheme was developed to identify the potential intrusion points within a DN. It utilized factors such as pollutant source (e.g., sewer characteristics), pollution pathway (water main diameter, length, age, and surrounding soil properties, etc.), consequence of contamination (e.g., population, and land use), and operational factors (e.g., water pressure) integrated through a geographical information system using advanced ArcMap 10 operations. The contaminant intrusion was modelled for E. Coli O156: H7 (a microbiological indicator) using the EPANET-MSX programmer’s toolkit. The quantitative microbial risk assessment and chemical (human health) risk assessment frameworks were adapted to estimate risk potentials. Booster chlorination locations and dosages were selected using a multi-objective genetic algorithm. The methodology was illustrated through a case study on a portion of a municipal DN.  相似文献   

20.
Mineral constituents of clay materials may promote interaction, adsorption and attachment of microorganisms, often resulting in biofilms’ formation. In this study investigation is made to determine how littoral clayey materials on the shores of a river promote accumulation of bacteria and increase contamination of river water. Clayey samples were collected at various points along the shore of a river around Mondeor in Johannesburg and the mineralogical composition was determined using XRD and XRF. Microorganisms in clay-biofilm and river water were identified by DNA sequencing and plate count. Results showed that total coliforms, Escherichia coli, Pseudomonas sp. and presumptive indigenous microorganisms attached to littoral clayey materials containing the mineral muscovite (characterising argillaceous soils). Bacteria number on clayey materials was significantly higher than on overlying water especially before rainy season. However a decrease of the number of bacteria in clayey materials concurrent with an increase in the number of suspended bacteria after rain events, was the result of the action of high and fast flows in the basin, eroding the biofilms. Attachment of microorganisms in clayey material as observed in this study could be ascribed to the glue-like aspect of soil (due to muscovite) that facilitates adhesion. It therefore demonstrates the potential of clayey materials to encourage biofilm formation and enhance microbial contamination of river water as shown here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号