首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Euboikos Gulf is a restricted embayment on the eastern coast of Greece, having a significant, unusual tidal phenomenon, and receiving some industrial and domestic wates. The South Euboikos Gulf has only slightly greater concentrations of nutrients than background, while the North Euboikos Gulf tends to accumulate nutrients, in particular nitrate and silicate. Also a comparison is made with the nutrient concentrations in polluted coastal gulfs of the Aegean. The different nutrient levels are due to the different sources of nutrients, as well as the morphology of each area and the circulation of the waters.  相似文献   

2.
An extensive campaign—including detailed geologic and geotechnical surveys both existing and news as well as noise measurements—was conducted along a cross-section in order to define both geometry and soil properties (mainly the shear wave velocity) of the main formations in Aigion city. Aigion city is located in the Gulf of Corinth, Greece, a highly seismic region of the Aegean Sea. The main objective of the accurate 2D soil model is its use in site response modeling and in the interpretation of observations from a vertical down-hole accelerograph array. This model revealed a complex geologic structure with a multi-faulted shear zone related to the Aigion fault. The defined subsurface structure offered the possibility for its correlation with estimated site effects, in terms of spectral ratios. Two different data sets, earthquakes recorded at down-hole accelerograph network and noise measurements at 17 sites, were used. To translate the empirical transfer functions with the geologic structure, the 1D estimates were also computed. All these results are consistent, indicating a satisfactory correlation between the soil model and preliminary site response.  相似文献   

3.
A statistical methodology is proposed for assessing the risk of eutrophication in marine coastal embayments. The procedure followed was the development of regression models relating the levels of chlorophyll a (Chl) with the concentration of the limiting nutrient--usually nitrogen--and the renewal rate of the systems. The method was applied in the Gulf of Gera, Island of Lesvos, Aegean Sea and a surrogate for renewal rate was created using the Canberra metric as a measure of the resemblance between the Gulf and the oligotrophic waters of the open sea in terms of their physical, chemical and biological properties. The Chl-total dissolved nitrogen-renewal rate regression model was the most significant, accounting for 60% of the variation observed in Chl. Predicted distributions of Chl for various combinations of the independent variables, based on Bayesian analysis of the models, enabled comparison of the outcomes of specific scenarios of interest as well as further analysis of the system dynamics. The present statistical approach can be used as a methodological tool for testing the resilience of coastal ecosystems under alternative managerial schemes and levels of exogenous nutrient loading.  相似文献   

4.
Eight years of AVHRR-derived sea surface temperature (SST) and SeaWiFS-derived surface chlorophyll (Chl) data (1998–2005) are used to investigate key processes affecting the spatial and temporal variability of the two parameters in the Aegean Sea. Seasonal mean SST and Chl maps are constructed using daily data to study seasonal dynamics whereas empirical orthogonal function (EOF) and correlational analysis is applied to the 8-day composite SST and Chl anomaly time-series in order to study the variability and co-variability of the two parameters from subseasonal to interannual time-scales. The seasonal mean fields show that Black Sea cold and chlorophyll-rich waters enter through the Dardanelles Strait and they are accumulated in the north-eastern part of the Aegean Sea, steered by the Samothraki anticyclone. Large chlorophyll concentrations are encountered in the hydrological front off the Dardanelles Strait as well as in coastal areas affected by large riverine/anthropogenic nutrient loads. The SST seasonal mean patterns reveal strong cooling that is associated with upwelling along the eastern boundary of the basin during summer due to strong northerly winds, a process which is not present in the surface chlorophyll climatology. The Chl dataset presents much stronger sub-seasonal variability than SST, with large variations in the phase and strength of the phytoplankton seasonal cycles. EOF analysis of the anomaly time-series shows that SST non-seasonal variability is controlled by synoptic weather variations and anomalies in the north–south wind-stress component regulating the summer coastal upwelling regime. Mean SST and Chl patterns, and their associated variations, are not closely linked implying that Black Sea and riverine inputs mainly control the intra-annual and interannual variability of the surface chlorophyll in the Aegean Sea rather than mixing and/or upwelling processes.  相似文献   

5.
Polar anthropogenic organic micropollutants are frequently detected in freshwater and discharged on large scale into marine systems. In this work the results of 153 samples collected from the shorelines of the Baltic Sea (Germany), Northern Adriatic Sea (Italy), Aegean Sea and Dardanelles (Greece & Turkey), San Francisco Bay (USA), Pacific Ocean (USA), Mediterranean Sea (Israel), and Balearic Sea (Spain) are presented. The samples were analyzed for various classes of micropollutants such as pharmaceuticals, corrosion inhibitors, biocides, and stimulants. Caffeine, paraxanthine, theobromine, tolyltriazole, 1H-benzotriazole, and atrazine were detected in >50% of all samples. The detection frequencies of carbamazepine, iopamidol, diuron, sulfamethoxazole, paracetamol, theophylline, and atenolol were between 20% and 32%. As caffeine is linked to untreated wastewater, the widespread occurrence of raw sewage in marine environments and thus potentially elevated nutrient concentrations and risk for the presence of wastewater-related pathogens is remarkable.  相似文献   

6.
The concentrations of two greenhouse gases, nitrous oxide (N2O) and methane (CH4), and the bacterial processes involved in their production (nitrification and denitrification for N2O, and methanogenesis for CH4), were determined in surface waters of two coastal areas under the influence of freshwater inputs, on one part in the Gulf of Lions and the Rhone River plume, in northwestern Mediterranean Sea, and on the other part in the inner Thermaikos Gulf, in Aegean Sea, eastern Mediterranean Sea. High concentrations of dissolved CH4 and N2O were recorded in the surface waters of Gulf of Lions and Gulf of Thermaikos, up to 1300 nM for CH4, and 40 nM for N2O. No direct relationship could be found between the concentration and production of the biogases, as they may also be produced in deep water or bottom sediment in shallow areas, or derived from anthropogenic activity or ship contamination in polluted areas. Irrespective of the origin of CH4 and N2O, the presence of extremely high concentrations of these two gases in superficial seawater implies that they can easily escape to the atmosphere; consequently, these nearshore waters enriched in greenhouse gases may play an important role in the increase in atmospheric concentration of both CH4 and N2O.  相似文献   

7.
This paper presents data for the temporal and spatial distribution of nutrients in Liverpool Bay between 2003 and 2009 and an analysis of inputs of nutrients from the major rivers. The spatial distribution of winter nutrient concentrations are controlled by the region of freshwater influence (ROFI) in Liverpool Bay through the mixing of riverine freshwater and Irish Sea water, with strong linear relationships between nutrient concentration and salinity between December and February. The location of highest spring and summer phytoplankton biomass reflects the nutrient distributions as controlled by the ROFI. Analysis of 7 years of data showed that the seasonal cycle of winter maximum nutrient concentrations in February and drawdown in April/May is a recurrent feature of this location, with the timing of the drawdown varying by several weeks between years. A comparison of observed nutrient concentrations in Liverpool Bay with those predicted from inputs from rivers has been presented. Nutrient concentrations in the rivers flowing into Liverpool Bay were highly variable and there was reasonable agreement between predicted freshwater nutrient concentrations using data from this study and riverine nutrient concentrations weighted on the basis of river flow, although the exact nature of mixing between the rivers could not be determined. Predicted Irish Sea nutrient concentrations in the winter were lower than those reported for the input waters of the North Atlantic, supporting findings from previous work that nitrogen is lost through denitrification in the Irish Sea.  相似文献   

8.
The nutrient load on the Gulf of Finland, the Baltic Sea, is estimated taking into account the export of nutrients from Lake Ladoga with Neva runoff, from the Chudsko-Pskovskoe Lake with Narva runoff, from a partial watershed of the Gulf of Finland, and wastewater discharges from St. Petersburg. The data used include the materials of state monitoring of water bodies and state statistical reports on northwestern Russia, materials of GUP Vodokanal Sankt Peterburga, the results of earlier researches of water quality formation in Lake Ladoga, the Gulf of Finland, and on their catchment, and the results of calculation of nutrient load on the gulf with the use of a model developed in the Institute of Limnology, RAS. Currently, the annual nutrient load on the Gulf of Finland is ∼5200 t Ptot and 70800 t Ntot. The phosphorus load exceeds the admissible levels recommended by the Helsinki Commission, thus suggesting the need to search for real ways to reduce the load in the future.  相似文献   

9.
The seasonal vertical distribution of particulate matter (PM) was studied in two contrasting areas: (a) the mesotrophic Skagerrak (in the North Sea); and (b) the oligotrophic northeastern Aegean Sea (eastern Mediterranean). Similarities and differences of the PM distribution in the two areas are assessed with respect to the prevailing hydrographic conditions and the PM composition. Hydrographic conditions in both of the areas are characterised by strong density gradients, resulting from the inflow of low-salinity water, i.e. Baltic Sea water and Black Sea water for the Skagerrak and the northeastern Aegean Sea, respectively.Enhanced primary production and particles mainly of biogenic origin characterise the mesotrophic Skagerrak, whereas five-fold lower particle concentrations appeared in the oligotrophic Aegean Sea. The input of riverine particulates was limited in both of the areas. In the Skagerrak, the strong stratification resulted in particle accumulation on/above the pycnocline and the development of pronounced intermediate nepheloid layers (INLs). The pycnocline-related INLs were formed entirely by dinoflagellates. The pycnocline hindered the vertical movement and sinking rates of particles, thus favouring primary production. Particle horizontal advection along the density discontinuities was probably enhanced. This pattern was not observed in the stratified waters of the northeastern Aegean Sea, probably due to the very low particle concentrations and/or the fact that phytoplankton maxima appeared in deeper waters. Pronounced INLs were identified in the Skagerrak below the pycnocline; these are attributed to accumulated or advected dinoflagellate skeletal remains mixed with clay mineral particles. This was revealed only by means of SEM observations. X-ray diffraction analysis could not provide information on the type of phytoplankton present, because dinoflagellates form their skeletons from organic material. Frontal stations in the northeastern Aegean Sea exhibited pronounced vertical movement of particles towards the deeper waters. Benthic nepheloid layers (BNL) were observed in the Skagerrak; these were related to the resuspended fine-grained surface sediments. In the northeastern Aegean Sea, although near-bottom current velocities were sufficient to resuspend surface sediments, resuspension occurred only episodically. The BNLs here are related mostly to near-bottom phytoplankton growth.  相似文献   

10.
The response of the Pagasitikos Gulf to enrichment caused by run-off fertilizers and the development and evolution of harmful algal blooms is investigated through ecosystem modelling. A standard generic complex model has been developed to describe the ecosystem processes of Pagasitikos and has been validated with in situ data. Additionally external nutrient fluxes have been assimilated and incorporated into the ecosystem dynamics. The investigation of spatial effects due to nutrient enrichment is investigated along a North–South transect. When externally forced the model successfully assimilates the external river inputs producing nutrient and chlorophyll-a concentrations, which are in good agreement with the in situ data. The nutrient inputs result in a more stable ecosystem at the north part of the Gulf and in the development of eutrophic conditions. The changes in the ecosystem functioning with emphasis on the nutrient cycling, the increase of primary production, and the modes of operation are investigated and discussed.  相似文献   

11.
Recent oceanographic observations and a retrospective analysis of nutrients and hydrography over the past five decades have revealed that the principal source of nutrients to the Gulf of Maine, the deep, nutrient-rich continental slope waters that enter at depth through the Northeast Channel, may have become less important to the Gulf's nutrient load. Since the 1970s, the deeper waters in the interior Gulf of Maine (>100 m) have become fresher and cooler, with lower nitrate (NO3) but higher silicate (Si(OH)4) concentrations. Prior to this decade, nitrate concentrations in the Gulf normally exceeded silicate by 4–5 μM, but now silicate and nitrate are nearly equal. These changes only partially correspond with that expected from deep slope water fluxes correlated with the North Atlantic Oscillation, and are opposite to patterns in freshwater discharges from the major rivers in the region. We suggest that accelerated melting in the Arctic and concomitant freshening of the Labrador Sea in recent decades have likely increased the equatorward baroclinic transport of the inner limb of the Labrador Current that flows over the broad continental shelf from the Grand Banks of Newfoundland to the Gulf of Maine. That current system now brings a greater fraction of colder and fresher deep shelf waters into the Gulf than warmer and saltier offshore slope waters which were previously thought to dominate the flux of nutrients. Those deep shelf waters reflect nitrate losses from sediment denitrification and silicate accumulations from rivers and in situ regeneration, which together are altering the nutrient regime and potentially the structure of the planktonic ecosystem.  相似文献   

12.
The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences.The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka?1, while the lowest values (0.34–0.60 m ka?1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34–0.90 m ka?1) were estimated for the period 146–18 ka BP (oxygen isotopic stages 6–2) and higher (1.46–1.88 m ka?1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10–8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka.During the isotopic stages 8, 10, 11 and 12, almost the 50–60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.  相似文献   

13.
The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.  相似文献   

14.
《Marine pollution bulletin》2014,88(1-2):338-344
The concentrations of 22 polyaromatic hydrocarbons (PAH) in Posidonia oceanica seagrass, sediments, and seawater from the Alexandroupolis Gulf in the Aegean Sea, were investigated from 2007 to 2011. Temporal trends of total PAH contents in P. oceanica and sediments were similar. PAH levels in seawater, sediments, and seagrasses generally decreased with increasing distance from Alexandroupolis Port. Leaves and sheaths of P. oceanica had higher PAH levels than roots and rhizomes. P. oceanica accumulates PAHs and has good potential as a bioindicator of spatiotemporal pollution trends. PAH concentrations were also examined using in situ passive seawater sampling and were compared to results of passive sampling in the laboratory using local sediments and seawater. Levels of high molecular weight PAHs assessed using passive samplers confirmed the decreasing gradient of pollution away from Alexandroupolis Port. Passive sampling also proved useful for investigating sources of PAHs in P. oceanica meadows.  相似文献   

15.
The Aegean Sea covers an area of some 160×103 km2 and receives the water/sediment fluxes from a mountainous drainage basin of >200×103 km2. On the basis of its morphodynamic characteristics, the Aegean Basin could be divided into: (1) the North Aegean Sea, an elongated region (trending between N50° and N70°) including the extensive northern shelves and the Deep Aegean Trough; (2) the Central Aegean, which includes: the Cyclades Plateau, a relatively shallow (average depth <350 m) submerged platform, surrounded by small basins (up to 1000 m depth), including also the relatively extended eastern shelf of Asia Minor, and (3) the Southern Aegean Sea, located southwards of the Hellenic volcanic arc, which presents the characteristics of a true back-arc basin (the Cretan Sea).The surficial unconsolidated sediments of the north Aegean floor are dominated by the terrigenous component (from 50% up to >90%) due to the large terrigenous riverine fluxes. The South Aegean presents high percentages (>50%) of biogenic material, due to the small terrigenous inputs and despite the fact that it is more oligotrophic than the North Aegean. The Central Aegean presents a transitional character with the terrigenous influxes being imported along its eastern part and quantitatively being in between those of the North and South Aegean Sea sub-regions.The coarse-grained materials in shallow (shelf) areas are attributed to ‘relict’ deposits, while those in large water depths are almost exclusively biogenic products. The offshore distribution of the fine-grained terrigenous material is dominated by the overall circulation pattern, while meso-scale eddies may, locally, either enhance (anticyclones) or reduce (cyclones) settling rates. Moreover, the spatial distribution of the predominant clay minerals (illite and smectite) and of kaolinite and chlorite is governed by the lithology and proximity to land source areas, the water circulation and the processes of differential settling and flocculation.Overall, the North Aegean is characterised by sedimentation processes similar to those of a ‘continental margin’, primarily neritic and secondarily hemipelagic, the Central Aegean region mostly by hemipelagic and the South Aegean, behaving more like an ‘oceanic margin’, mostly by pelagic processes.  相似文献   

16.
Mediterranean island arcs and origin of high potash volcanoes   总被引:1,自引:0,他引:1  
Active volcanoes of the Mediterranean Sea are distributed along two arc structures: the Hellenic arc in the Aegean Sea and the Calabrian arc in the Tyrrhenian Sea. The active volcanoes in both arcs lie above earthquakes with focal depth greater than 100 km. The depth of these earthquakes increases generally northward reaching a maximum depth of about 200 km in the Aegean Sea and more than 300 km in the Tyrrhenian Sea.  相似文献   

17.
We determine the velocities in an upper crustal model, composed of three homogeneous layers, for one subregion of the western part of the Gulf of Corinth, NE of the town of Aigion, Greece. We have used local events that occurred there in the year 2001 and were recorded by the Corinth Rift Laboratory Network. Weighted P and S arrival time residuals are minimized using the Neighbourhood Algorithm of Sambridge (1999), combined with the grid search for source locations. The resolution of the inversion is tested by delete-one jackknifing. The model obtained is compared with some other models derived or applied to the subregion. A fast velocity increase between depths of 5 and 7 km is confirmed as the major structural element.  相似文献   

18.
The concentrations of metals were measured in macroalgae species seasonally at eight coastal stations along the eastern Aegean coast. Sediment and seawater samples were also collected to detect their metal contents in order to gain more information on the environmental conditions of the area and possible bioaccumulation patterns. The aim of this study is, to gather more information on the use of selected species as cosmopolitan biomonitors for the eastern Aegean; to provide information on the marine environmental quality by the use of macroalgae and to determine which algae species are suitable as biomonitoring species for the study area. The relative abundance of metals in macroalgae decreases in the order: Fe-Zn-Cu-Cr-Cd-Hg-Pb and seawater: Fe-Zn-Pb-Cu-Cr-Cd-Hg. In sediment the distribution order from higher to lower was Fe-Cr-Zn-Pb-Cu-Hg-Cd. The brown algae Cystoseira sp., the green algae Ulva sp. and Enteromorpha sp. possess high potential as cosmopolitan biomonitors for trace metals in the Aegean Sea.  相似文献   

19.
The North Anatolian Fault (NAF), which extends from Karl?ova in Eastern Turkey to the Gulf of Saros in the Northern Aegean Sea, is one of the longest active strike-slip faults in the world with a length of about 1500 km. Within the North Anatolian Shear Zone (NASZ) there are long splays off the main trunk of the NAF veering towards the interior parts of Anatolia. Although the whole shear zone is still seismically active, the major seismicity is concentrated along the main branch of the NAF. Splays of the NAF dissect the shear zone into different continental blocks. The largest splay of the NAF was selected to analyze the distribution of movements between the faults delimiting these blocks. Four years of GPS measurements and modeling results indicate that the differential motion between the Anatolian collage and the Eurasian plate along the central part of the NAF is partitioned between fault splays and varies between 18.7 ± 1.6 and 21.5 ± 2.1 mm/yr with the main branch taking ∼90% of the motion.  相似文献   

20.
《Continental Shelf Research》2006,26(12-13):1448-1468
To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May–September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号