首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collision of the oceanic Lough Nafooey Island Arc with the passive margin of Laurentia after 480 Ma in western Ireland resulted in the deformation, magmatism and metamorphism of the Grampian Orogeny, analogous to the modern Taiwan and Miocene New Guinea Orogens. After 470 Ma, the metamorphosed Laurentian margin sediments (Dalradian Supergroup) now exposed in Connemara and North Mayo were cooled rapidly (>35 °C/m.y.) and exhumed to the surface. We propose that this exhumation occurred mainly as a result of an oceanward collapse of the colliding arc southwards, probably aided by subduction rollback, into the new trench formed after subduction polarity reversal following collision. The Achill Beg Fault, in particular, along the southern edge of the North Mayo Dalradian Terrane, separates very low-grade sedimentary rocks of the South Mayo Trough (Lough Nafooey forearc) and accreted sedimentary rocks of the Clew Bay Complex from high-grade Dalradian meta-sedimentary rocks, suggesting that this was a major detachment structure. In northern Connemara, the unconformity between the Dalradian and the Silurian cover probably represents an eroded major detachment surface, with the Renvyle–Bofin Slide as a related but subordinate structure. Blocks of sheared mafic and ultramafic rocks in the Dalradian immediately below this unconformity surface probably represent arc lower crustal and mantle rocks or fragments of a high level ophiolite sheet entrained along the detachment during exhumation.Orogenic collapse was accompanied in the South Mayo Trough by coarse clastic sedimentation derived mostly from the exhuming Dalradian to the north and, to a lesser extent, from the Lough Nafooey Arc to the south. Sediment flow in the South Mayo Trough was dominantly axial, deepening toward the west. Volcanism associated with orogenic collapse (Rosroe and Mweelrea Formations) is variably enriched in high field strength elements, suggesting a heterogeneous enriched mantle wedge under the new post-collisional continental arc.  相似文献   

2.
To estimate the amount of H2O stored at lower crustal levels after burial, we considered the pile of migmatitic paragneisses in the Variscan Ulten Zone as a case study area. We constructed a pseudosection in the system K2O-Na2O-CaO-FeO-MnO-MgO-Al2O3-SiO2-TiO2-H2O for an average paragneiss, a relevant prograde PT path (8.5 kbar, 600°C; 11.5 kbar, 750°C; 14.0 kbar, 1000°C) and H2O contents between 0 and 10 wt.%. Based on an assemblage of garnet?+?biotite?+?white mica?+?kyanite?+?20–30 vol.% former melt (now represented mainly by leucosomes composed of plagioclase?+?quartz), a bulk H2O content of 3.2 ± 1.1 wt.% was estimated for a peak temperature ranging between 770 and 800°C. Before melting, somewhat less than 1.8 wt.% H2O was stored in minerals. Thus, a considerable amount of H2O must have either resided in pore spaces along grain boundaries or, much less likely, infiltrated the paragneisses from below. Evidently, significant quantities of H2O as a free phase may be stored in buried sialic crust, resulting in considerable melting of deep-seated rocks during continentcontinent collision.  相似文献   

3.
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle.  相似文献   

4.
Part II of this paper reports geochemical and Nd isotope characteristics of the volcanogenic and siliceous-terrigenous complexes of the Lake zone of the Central Asian Caledonides and associating granitoids of various ages. Geological, geochronological, geochemical, and isotopic data were synthesized with application to the problems of the sources and main mechanisms of continental crust formation and evolution for the Caledonides of the Central Asian orogenic belt. It was found that the juvenile sialic crust of the Lake zone was formed during the Vendian-Cambrian (approximately 570–490 Ma) in an environment of intraoceanic island arcs and oceanic islands from depleted mantle sources with the entrainment of sedimentary crustal materials into subduction zones and owing to the accretion processes of the amalgamation of paleoceanic and island arc complexes and Precambrian microcontinents, which terminated by ∼490 Ma. The source of primary melts for the low-Ti basalts, andesites, and dacites of the Lake zone ophiolites and island arc complexes was mainly the depleted mantle wedge above a subduction zone. In addition, an enriched plume source contributed to the genesis of the high-Ti basalts and gabbroids of oceanic plateaus. The source of terrigenous rocks associating with the volcanics was composed of materials similar in composition to the country rocks at a minor and varying role of ancient crustal materials introduced into the ocean basin owing to the erosion of Precambrian microcontinents. The sedimentary rocks of the accretionary prism were derived by the erosion of mainly juvenile island arc sources with a minor contribution of rocks of the mature continental crust. The island arc and accretion stages of the development of the Lake zone (∼540–590 Ma) were accompanied by the development of high- and low-alumina sodic granitoids through the melting at various depths of depleted mantle reservoirs (metabasites of a subducted oceanic slab and a mantle wedge) and at the base of the island arc at the subordinate role of ancient crustal rocks. The melts of the postaccretion granitoids of the Central Asian Caledonides were derived mainly from the rocks of the juvenile Caledonian crust at an increasing input of an ancient crustal component owing to the tectonic mixing of the rocks of ophiolitic and island arc complexes and microcontinents. The obtained results indicate that the Vendian-Early Paleozoic stage of the evolution of the Central Asian orogenic belt was characterized by the extensive growth of juvenile continental crust and allow us to distinguish a corresponding stage of juvenile crust formation.  相似文献   

5.
The eastern Western Gneiss Region of central Norway is part of the deepest exposed Norwegian Caledonides, where basement gneisses and an overlying thrust-nappe sequence have been folded into large fold-nappes. Structural analysis of a fold-nappe within the central part of the district (the Grøvudal area) suggests that it has a strongly sheath-like form, and that other fold-nappes of the Western Gneiss Region may also have sheath-like forms. The structural history within the Grøvudal area is dominated by intense east-directed subhorizontal shear in an overthrust sense, followed by asymmetric refolding with an easterly vergence. A computer-generated kinematic model was developed to test whether the regional interference patterns could be explained by sheath-fold development during this type of deformation. The computer model shows that the major regional interference patterns could have been formed by such a kinematic history, but does not rule out other possibile histories. The proposed kinematic history is, however, compatible with the regional tectonic history of the main Caledonian nappe pile, suggesting that the complex nappe interference patterns typical of the region were formed in a kinematically simple, but intense, ductile deformation associated with Caledonian continental imbrication.  相似文献   

6.
分布在青藏高原北缘的阿尔金-祁连-柴北缘早古生代造山系被认为是原特提斯构造域最北部的构造拼合体。与其北侧具有长期增生历史的中亚造山系相比,特提斯造山拼合体被认为是各种来自冈瓦纳大陆北部大陆块体相互碰撞的产物。然而,与典型的阿尔卑斯和喜马拉雅碰撞造山带相比,阿尔金-祁连-柴北缘早古生代造山系包括有大量蛇绿岩、弧岩浆杂岩、俯冲-增生杂岩等,因此一些学者认为青藏高原北部的早古生代造山系为沿塔里木和华北克拉通边界向南逐渐增生的增生型造山带。但是,增生造山模式又很难解释南阿尔金-柴北缘地区普遍存在的与大陆俯冲有关的UHP变质岩、广泛分布的巴罗式变质作用和相关的岩浆作用,以及与碰撞造山有关的变形构造等。在本文中,通过对已有研究资料的综合总结,结合一些新的研究资料,我们提出在青藏高原东北缘的阿尔金-祁连-柴北缘造山系中,早古生代时期存在两种不同类型的造山作用,即增生和碰撞造山作用,其主要标志是北祁连-北阿尔金的HP/LT变质带、蛇绿混杂岩及与洋壳俯冲有关的构造岩浆作用,以及分布在柴北缘-南阿尔金与大陆俯冲和陆陆碰撞有关的UHP变质带、区域巴罗式变质作用、深熔作用、相关的岩浆活动及伸展垮塌作用等,并建立了一个反映原特提斯洋俯冲、增生、闭合及碰撞造山作用的构造模式。  相似文献   

7.
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.  相似文献   

8.
Foliated (garnet-bearing) (FGB) granites are associated closely with and are usually the major wall rocks of the high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks in the Tongbai-Dabie region, the mid segment of the Qinling-Dabie-Sulu orogenic belt in central China. These granites appear either as small plutons or as veins, which commonly intrude into or surround the HP and UHP metamorphic eclogites or gneisses. The veins of FGB granites usually penetrate into the retrograded eclogites or gneisses along the foliations. Condensation rims can occasionally be found along the margins of granite veins. These granites are rich in Si and alkali with high Ga/Al ratios, and depleted in Ca, Mg, Al, Ti, Sc, V, Ni, Co, Cr and Sr, which are similar to A-type granites. In a chondrite normalized diagram, the samples are light rare earth elements enriched with different extent of negative Eu anomaly. Moreover, Rb, Nb, Ta, Sr, P and Ti show different degrees of negative anomalies, whereas Ba, K, La, Zr and Hf show positive anomalies in the primitive mantle normalized diagram. Negative anomalies of Eu and Sr indicate strong influence of plagioclase. In conventional discrimination diagrams, these FGB granites belong to the A-type granite, with geochemical characteristics affinitive to post-collisional granites. The εNd (230 Ma) values (−15.80 to −2.52) and T DM values (1.02–2.07 Ga) suggest that magma for the FGB granites were derived from a heterogeneous crustal source. Therefore, the FGB granites may provide clues for deciphering the formation of post-collisional granites. It is proposed that the magma of the FGB granites both in the HP and UHP units was formed in an extensional tectonic setting slightly post-dating the HP and UHP metamorphism, most likely as a result of decompressional partial melting of UHP retrograded eclogites during exhumation.  相似文献   

9.
This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone.

The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the ?zmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust.

Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust.

Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin.

Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale.

Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45?Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault.

In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.  相似文献   

10.
The Makbal Complex in the northern Tianshan of Kazakhstan and Kyrgyzstan consists of metasedimentary rocks, which host high‐P (HP) mafic blocks and ultra‐HP Grt‐Cld‐Tlc schists (UHP as indicated by coesite relicts in garnet). Whole rock major and trace element signatures of the Grt‐Cld‐Tlc schist suggest a metasomatized protolith from either hydrothermally altered oceanic crust in a back‐arc basin or arc‐related volcaniclastics. Peak metamorphic conditions of the Grt‐Cld‐Tlc schist reached ~580 °C and 2.85 GPa corresponding to a maximum burial depth of ~95 km. A Sm‐Nd garnet age of 475 ± 4 Ma is interpreted as an average growth age of garnet during prograde‐to‐peak metamorphism; the low initial εΝd value of ?11 indicates a protolith with an ancient crustal component. The petrological evidence for deep subduction of oceanic crust poses questions with respect to an effective exhumation mechanism. Field relationships and the metamorphic evolution of other HP mafic oceanic rocks embedded in continentally derived metasedimentary rocks at the central Makbal Complex suggest that fragments of oceanic crust and clastic sedimentary rocks were exhumed from different depths in a subduction channel during ongoing subduction and are now exposed as a tectonic mélange. Furthermore, channel flow cannot only explain a tectonic mélange consisting of various rock types with different subduction histories as present at the central Makbal Complex, but also the presence of a structural ‘dome’ with UHP rocks in the core (central Makbal) surrounded by lower pressure nappes (including mafic dykes in continental crust) and voluminous metasedimentary rocks, mainly derived from the accretionary wedge.  相似文献   

11.
A new approach to the investigation of the Sm/Nd evolution of the upper mantle directly from the data on lherzolite xenoliths is described in this paper.It is demonstrated that the model age TCHUR of an unmetasomatic iherzolite zenolith ca represent the mean depletion age of its mantle source, thus presenting a correlation trend between f^Sm/Nd and the mean depletion age of the upper mantle from the data on xenoliths.This correlation trend can also be derived from the data on river suspended loads as well as from granitoids.Based on the correlation trend mentioned above and mean depletion ages of the upper mantle at various geological times, an evolution curve for the mean f^Sm/Nd value of the upper mantle through geological time has been established.It is suggested that the upwilling of lower mantle material into the upper mantle and the recycling of continental crust material during the Archean were more active ,thus maintaining fairly constantf^Sm/Nd and εNd values during this time period. Similarly ,an evolution curve for the mean f^Sm/Nd value of the continental crust through geological time has also been established from the data of continental crust material.In the light of both evolution curves for the upper mantle and continental crust ,a growth curve for the continental crust has been worked out ,suggesting that :(1)about 30%(in volume )of the present crust was present as the continental crust at 3.8 Ga ago ;(2)the growth rate was much lower during the Archean ;and (3)the Proterozoic is another major period of time during which the continental crust wsa built up .  相似文献   

12.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

13.
中国大陆科学钻探主孔揭示的大陆地壳生热模型   总被引:2,自引:0,他引:2  
本文对大陆科学钻探主孔149块岩心样品进行了系统的岩石放射性生热元素U、Th和K的含量测试,同时结合该井浅部井段前人的实测数据,揭示了上地壳5km生热率的垂向分布。结果显示,以1650m为界,上下两段生热率均随深度呈增加趋势,与正常地壳生热率特征不同,显示出超高压变质带独特的生热率垂向变化特征。结合地壳的岩性分布,建立了苏鲁超高压变质带地壳的生热模型。该模型中,地壳厚32km,其中上地壳0-10km,由超高压变质岩片组成,按岩性又详细分为8层,生热率变化在0.49~1.73μWm^-3。中地壳10~20km,由片麻岩组成,生热率为生热率1.51μWm^-3。下地壳20~32km为麻粒岩,生热率0.31μWm^-3。整个地壳热流约31mW/m^2,其中上地壳12mW/m^2。上地壳厚度和热流分别占整个地壳的31%和39%。与华北和下扬子地壳生热模型相比,上地壳热流整个地壳热流的比例最低。这表明,苏鲁超高压变质带,作为中朝与扬子板块俯冲-碰撞的产物,其地壳生率垂向分布与正常大陆地壳(华北、下扬子)相比,具有显著的不同。  相似文献   

14.
西藏冈底斯南部陆陆碰撞早期成矿作用分析   总被引:4,自引:0,他引:4  
冈底斯带南部发育有大量的斑岩铜钼矿床和矽卡岩型铜铅锌多金属矿床,形成了斑岩铜矿带和多金属矿带.前人的研究表明,成矿带内的矿床形成年代大都小于30Ma,处于碰撞后期伸展构造环境.本文对冈底斯带中南部的甲龙矽卡岩型铁矿、撒当金银矿床(点)和多底沟矽卡岩型钼矿床(点)开展了年代学研究,结果显示:甲龙铁矿黑云母二长花岗斑岩的锆石LA-ICP-MS U-Pb年龄为61.1 ±0.4Ma,MSWD=0.94;撒当赋矿安山岩锆石LA-ICP-MS U-Pb年龄为62.6±0.5Ma,MSWD=1.51;多底沟钼矿床(点)3件辉钼矿Re-Os模式年龄为64.3±0.8Ma ~ 69.2±3.3Ma,加权平均模式年龄为66.7±6.4Ma(MSWD=8.1).三个矿床(点)的同位素年龄表明成岩成矿事件和印度-欧亚板块陆陆碰撞早期构造岩浆事件有关.结合前人工作,我们提出冈底斯中南部发生了大规模与陆陆碰撞早期岩浆事件有关的成矿作用,形成了大面积分布的矿床,具有良好的找矿前景,应引起更多关注.  相似文献   

15.
Milnes  & Koyi 《地学学报》2000,12(1):1-7
The main Caledonian deformation in the Western Gneiss Complex (southern Norway) has been interpreted as resulting from the gravity-driven ductile rebound of the orogenic root. Detailed field data from the Sognefjord profile, a 60-km long, continuously exposed shore section through the complex, are compared with the results of a numerical scale model of root rebound dimensioned according to reconstructions of the overall tectonic evolution. The strain pattern in the model can be closely tied to the previously recognized structural regimes, from east to west: R1 – little deformed Precambrian basement (stiff orogenic lid, basal part of upper crust); R2 – heterogeneously sheared basement ('simple shear' domain at upper crust/lower crust boundary); R3 – completely overprinted basement with eclogitic remnants ('pure shear' regime in the lower crust of the rebounded root). Subsequent to root rebound the profile remained practically unaffected by later tectonic events, except for tilting/uplift/erosion, providing a unique example of deep-seated gravity tectonics.  相似文献   

16.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

17.
Mobilization and migration of the heat‐producing elements (HPE) during anatexis is a critical process in the development of orogenic systems, the evolution of continental crust and the stabilization of cratons. In many crustal rocks the accessory minerals are the dominant hosts of Th and U, and the behaviour of these minerals during partial melting controls the concentrations of these elements in draining melt and residue. We use phase equilibrium modelling to evaluate if loss of melt saturated in the essential structural constituents of the accessory minerals can explain the concentrations of Th and U in residual metasedimentary migmatites and granulites along two well‐characterized crustal transects in the Ivrea zone, Italy and at Mt Stafford, Australia. While an equilibrium model of accessory mineral breakdown and melt loss approximates the depletion of U in the residual crust along both transects, it does not explain the relative enrichment of Th. We propose that the high Th concentrations in residual crust may be explained by either inhibition of monazite dissolution by kinetic factors or near‐peak growth of new high Th grains and overgrowth rims on undissolved monazite due to migration of melt through the orogenic crust. Retention of the HPE in the middle and deep orogenic crust may allow metasedimentary granulites to overcome the enthalpy barrier of melting to achieve ultrahigh temperature conditions and may be partly responsible for the slow cooling of many granulite terranes. Lastly, although the mantle was warmer and crustal heat production was higher in the past, peak temperatures and apparent thermal gradients of high‐temperature (HT)–ultrahigh temperature (UHT) granulite terranes have not decreased significantly since the Neoarchean. However, the pressure of HP granulite facies metamorphism has increased gradually from the Archean to the Phanerozoic, which suggests that the lithosphere became stronger as secular cooling of the mantle enabled plate collisions to form thicker orogens. Thus, as the lithosphere became stronger, the proportion of HT–UHT metamorphism associated with thin lithosphere and mantle heat has decreased, whereas the proportion associated with the formation of thick crust and radiogenic heat has increased.  相似文献   

18.
胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化   总被引:4,自引:4,他引:0  
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2015,31(10):2942-2958
早前寒武纪重大岩浆事件是早期陆壳增生及演化的主要地质作用。本文通过系统总结最近几年胶北地体早前寒武纪重大岩浆事件代表性岩石的岩相学、锆石U-Pb年代学、岩石地球化学及锆石Hf同位素研究的最新成果,厘定出太古宙~2.9Ga、2.7Ga及2.5Ga三期以TTGs岩浆事件为代表的陆壳增生事件。这些TTGs具有典型太古宙高铝TTGs的地球化学特征及正的εHf(t)值,锆石Hf模式年龄主要集中在ca.3.2~2.7Ga。两种不同的构造模式被用来理解胶北太古宙TTGs(陆壳)的成因:(1)加厚基性下地壳的部分熔融;(2)俯冲洋壳的部分熔融。根据胶北TTGs在时间上呈事件性侵位,空间上呈面状分布,以及相对较低的Mg#、Cr及Ni含量,前者可能更适合胶北TTGs的成因。确定了胶北古元古代2.2~2.0Ga黑云母/角闪石二长花岗片麻岩及~1.8Ga以二长(正长)花岗岩为代表的多期陆壳重熔事件。综合这些研究结果,初步总结出胶北早前寒武纪陆壳形成及演化历史:1)2.9Ga,主要为基性地壳(洋壳)的增生,并可能存在规模有限的、被剥蚀殆尽的太古宙早期陆壳;2)在~2.9Ga、~2.7Ga及~2.5Ga,由于地幔(热)柱上涌,ca.3.3~2.7Ga新生的加厚基性玄武质下地壳发生事件性部分熔融,并伴随有早期陆壳的重熔,形成主要由TTGs及少量陆壳重熔型(高钾)花岗岩组成的太古宙陆壳;3)ca.2.2~2.0Ga,可能由于地幔物质上涌,陆壳伸展,形成裂谷,陆壳物质重熔,形成ca.2.2~2.0Ga花岗质岩石;4)ca.1.95~1.85Ga,发生强烈的挤压碰撞构造作用,裂谷闭合,卷入挤压作用的物质发生高角闪岩相到高压麻粒岩相变质;5)~1.8Ga,地幔物质上涌,陆壳伸展减薄,陆壳物质重熔,形成~1.8Ga花岗岩。  相似文献   

19.
The available geological, geochronological and isotopic data on the felsic magmatic and related rocks from South Siberia, Transbaikalia and Mongolia are summarized to improve our understanding of the mechanisms and processes of the Phanerozoic crustal growth in the Central Asian mobile belt (CAMB). The following isotope provinces have been recognised: ‘Precambrian’ (TDM=3.3–2.9 and 2.5–0.9 Ga) at the microcontinental blocks, ‘Caledonian’ (TDM=1.1–0.55 Ga), ‘Hercynian’ (TDM=0.8–0.5 Ma) and ‘Indosinian’ (TDM=0.3 Ga) that coincide with coeval tectonic zones and formed at 570–475, 420–320 and 310–220 Ma. Continental crust of the microcontinents is underlain by, or intermixed with, ‘juvenile’ crust as evidenced by its isotopic heterogeneity. The continental crust of the Caledonian, Hercynian and Indosinian provinces is isotopically homogeneous and was produced from respective juvenile sources with addition of old crustal material in the island arcs or active continental margin environments. The crustal growth in the CAMB had episodic character and important crust-forming events took place in the Phanerozoic. Formation of the CAMB was connected with break up of the Rodinia supercontinent in consequence of creation of the South-Pacific hot superplume. Intraplate magmatism preceding and accompanying permanently other magmatic activity in the CAMB was caused by influence of the long-term South-Pacific plume or the Asian plume damping since the Devonian.  相似文献   

20.
Determining the timing, duration and mechanism of tectonic events within an orogenic cycle, such as ocean subduction, continent–continent collision or gravitational collapse, is challenging, especially in ancient orogenic belts. Variations in the tectonic transport direction, however, can be used as a guide to these stages of orogeny. While thrust sheets within the Caledonian allochthon in north Norway were emplaced broadly eastwards perpendicular to the trend of the orogen, many features indicate material transport in other orientations. One dominant feature of the Magerøy Nappe, sitting above and infolded with the Kalak Nappe Complex, is the development of a strong N–S lineation orthogonal to the main transport direction. Strain measurements, in part determined by a new method, are used, in the context of the regional structural data to identify the critical stage in orogeny when compressional forces are balanced by orogen-parallel lateral escape. Quantitative 3-D strain estimation in the Magerøy Nappe indicates prolate deformation with c. 50% horizontal shortening parallel to the thrusting direction (E–W) and c. 200% extension along the orogenic strike (N–S) with c. 30% vertical shortening. Temporal constraint on this fabric is provided by Ar–Ar isotopic analysis of undeformed white mica in cross-cutting granitic pegmatites. These data show that prolate deformation occurred before the white mica cooling age of 416 ± 4 Ma, while the previously determined depositional age of the Hellefjord Schist indicates that it occurred after 438 ± 4 Ma. A granitic pegmatite that intruded the Hellefjord Schist after an initial deformation phase but during or prior to a later deformation, has been dated at 431 ± 2 Ma by U–Pb zircon. A previous lower age constraint on this deformation of 428 ± 5 Ma is given by metamorphic zircon overgrowths on fractured grains. These results constrain the continental collision between Baltica and Laurentia in Finnmark to the interval c. 431–428 Ma. Placed in a regional context, these results indicate that lateral escape was orthogonal to the thrusting direction and occurred during the continent–continent collision stage in the Scandian Orogeny before gravitationally driven collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号