首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gradient-based history matching algorithms can be used to adapt the uncertain parameters in a reservoir model using production data. They require, however, the implementation of an adjoint model to compute the gradients, which is usually an enormous programming effort. We propose a new approach to gradient-based history matching which is based on model reduction, where the original (nonlinear and high-order) forward model is replaced by a linear reduced-order forward model and, consequently, the adjoint of the tangent linear approximation of the original forward model is replaced by the adjoint of a linear reduced-order forward model. The reduced-order model is constructed with the aid of the proper orthogonal decomposition method. Due to the linear character of the reduced model, the corresponding adjoint model is easily obtained. The gradient of the objective function is approximated, and the minimization problem is solved in the reduced space; the procedure is iterated with the updated estimate of the parameters if necessary. The proposed approach is adjoint-free and can be used with any reservoir simulator. The method was evaluated for a waterflood reservoir with channelized permeability field. A comparison with an adjoint-based history matching procedure shows that the model-reduced approach gives a comparable quality of history matches and predictions. The computational efficiency of the model-reduced approach is lower than of an adjoint-based approach, but higher than of an approach where the gradients are obtained with simple finite differences.  相似文献   

2.
3.
In a recent paper, we developed a physics-based data-driven model referred to as INSIM-FT and showed that it can be used for history matching and future reservoir performance predictions even when no prior geological model is available. The model requires no prior knowledge of petrophysical properties. In this work, we explore the possibility of using INSIM-FT in place of a reservoir simulation model when estimating the well controls that optimize water flooding performance where we use the net present value (NPV) of life-cycle production as our cost (objective) function. The well controls are either the flowing bottom-hole pressure (BHP) or total liquid rates at injectors and producers on the time intervals which represent the prescribed control steps. The optimal well controls that maximize NPV are estimated with an ensemble-based optimization algorithm using the history-matched INSIM-FT model as the forward model. We compare the optimal NPV obtained using INSIM-FT as the forward model with the estimate of the optimal NPV obtained using the correct full-scale reservoir simulation model when performing waterflooding optimization.  相似文献   

4.
Waterflooding using closed-loop control   总被引:2,自引:0,他引:2  
To fully exploit the possibilities of “smart” wells containing both measurement and control equipment, one can envision a system where the measurements are used for frequent updating of a reservoir model, and an optimal control strategy is computed based on this continuously updated model. We developed such a closed-loop control approach using an ensemble Kalman filter to obtain frequent updates of a reservoir model. Based on the most recent update of the reservoir model, the optimal control strategy is computed with the aid of an adjoint formulation. The objective is to maximize the economic value over the life of the reservoir. We demonstrate the methodology on a simple waterflooding example using one injector and one producer, each equipped with several individually controllable inflow control valves (ICVs). The parameters (permeabilities) and dynamic states (pressures and saturations) of the reservoir model are updated from pressure measurements in the wells. The control of the ICVs is rate-constrained, but the methodology is also applicable to a pressure-constrained situation. Furthermore, the methodology is not restricted to use with “smart” wells with down-hole control, but could also be used for flooding control with conventional wells, provided the wells are equipped with controllable chokes and with sensors for measurement of (wellhead or down hole) pressures and total flow rates. As the ensemble Kalman filter is a Monte Carlo approach, the final results will vary for each run. We studied the robustness of the methodology, starting from different initial ensembles. Moreover, we made a comparison of a case with low measurement noise to one with significantly higher measurement noise. In all examples considered, the resulting ultimate recovery was significantly higher than for the case of waterflooding using conventional wells. Furthermore, the results obtained using closed-loop control, starting from an unknown permeability field, were almost as good as those obtained assuming a priori knowledge of the permeability field.  相似文献   

5.
In a previous paper, we developed a theoretical basis for parameterization of reservoir model parameters based on truncated singular value decomposition (SVD) of the dimensionless sensitivity matrix. Two gradient-based algorithms based on truncated SVD were developed for history matching. In general, the best of these “SVD” algorithms requires on the order of 1/2 the number of equivalent reservoir simulation runs that are required by the limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. In this work, we show that when combining SVD parameterization with the randomized maximum likelihood method, we can achieve significant additional computational savings by history matching all models simultaneously using a SVD parameterization based on a particular sensitivity matrix at each iteration. We present two new algorithms based on this idea, one which relies only on updating the SVD parameterization at each iteration and one which combines an inner iteration based on an adjoint gradient where during the inner iteration the truncated SVD parameterization does not vary. Results generated with our algorithms are compared with results obtained from the ensemble Kalman filter (EnKF). Finally, we show that by combining EnKF with the SVD-algorithm, we can improve the reliability of EnKF estimates.  相似文献   

6.
A generic framework for the computation of derivative information required for gradient-based optimization using sequentially coupled subsurface simulation models is presented. The proposed approach allows for the computation of any derivative information with no modification of the mathematical framework. It only requires the forward model Jacobians and the objective function to be appropriately defined. The flexibility of the framework is demonstrated by its application in different reservoir management studies. The performance of the gradient computation strategy is demonstrated in a synthetic water-flooding model, where the forward model is constructed based on a sequentially coupled flow-transport system. The methodology is illustrated for a synthetic model, with different types of applications of data assimilation and life-cycle optimization. Results are compared with the classical fully coupled (FIM) forward simulation. Based on the presented numerical examples, it is demonstrated how, without any modifications of the basic framework, the solution of gradient-based optimization models can be obtained for any given set of coupled equations. The sequential derivative computation methods deliver similar results compared to FIM methods, while being computationally more efficient.  相似文献   

7.
非常规油气藏地质建模与数值模拟是通过对地质、地震、油藏综合研究,建立储层精细地质模型。首先建立构造模型,同时运用地震反演的成果结合单井岩相数据建立岩相模型,利用钻井泥浆漏失、油气田和单井的实际生产情况和微地震监测,描述油气藏内发育的天然裂缝和人工压裂裂缝,最终利用岩相模型控制建立孔隙度和饱和度等属性模型,为数值模拟提供能够反映与实际地质情况相符的三维油气藏粗化地质模型。在此模型的基础上,进行生产历史拟合、产量预测,并制定合理的开发方案。  相似文献   

8.
An adjoint formulation for the gradient-based optimization of oil–gas compositional reservoir simulation problems is presented. The method is implemented within an automatic differentiation-based compositional flow simulator (Stanford’s Automatic Differentiation-based General Purpose Research Simulator, AD-GPRS). The development of adjoint procedures for general compositional problems is much more challenging than for oil–water problems due to the increased complexity of the code and the underlying physics. The treatment of nonlinear constraints, an example of which is a maximum gas rate specification in injection or production wells, when the control variables are well bottom-hole pressures, poses a particular challenge. Two approaches for handling these constraints are presented—a formal treatment within the optimizer and a simpler heuristic treatment in the forward model. The relationship between discrete and continuous adjoint formulations is also elucidated. Results for four example cases of increasing complexity are presented. Improvements in the objective function (cumulative oil produced) relative to reference solutions range from 4.2 to 11.6 %. The heuristic treatment of nonlinear constraints is shown to offer a cost-effective means for obtaining feasible solutions, which are, in some cases, better than those obtained using the formal constraint handling procedure.  相似文献   

9.
From a system-theoretical point of view and for a given configuration of wells, there are only a limited number of degrees of freedom in the input–output dynamics of a reservoir system. This means that a large number of combinations of the state variables (pressure and saturation values) are not actually controllable and observable from the wells, and accordingly, they are not affecting the input–output behavior of the system. In an earlier publication, we therefore proposed a control-relevant upscaling methodology that uniformly coarsens the reservoir. Here, we present a control-relevant selective (i.e. non-uniform) coarsening (CRSC) method, in which the criterion for grid size adaptation is based on ranking the grid block contributions to the controllability and observability of the reservoir system. This multi-level CRSC method is attractive for use in iterative procedures such as computer-assisted flooding optimization for a given configuration of wells. In contrast to conventional flow-based coarsening techniques our method is independent of the specific flow rates or pressures imposed at the wells. Moreover the system-theoretical norms employed in our method provide tight upper bounds to the ‘input–output energy’ of the fine and coarse systems. These can be used as an a priori error-estimate of the performance of the coarse model. We applied our algorithm to two numerical examples and found that it can accurately reproduce results from the corresponding fine-scale simulations, while significantly speeding up the simulation.  相似文献   

10.
We apply adjoint-based optimization to a surfactant-alternating gas foam process using a linear foam model introducing gradual changes in gas mobility and a nonlinear foam model giving abrupt changes in gas mobility as function of oil and water saturations and surfactant concentration. For the linear foam model, the objective function is a relatively smooth function of the switching time. For the nonlinear foam model, the objective function exhibits many small-scale fluctuations. As a result, a gradient-based optimization routine could have difficulty finding the optimal switching time. For the nonlinear foam model, extremely small time steps were required in the forward integration to converge to an accurate solution to the semi-discrete (discretized in space, continuous in time) problem. The semi-discrete solution still had strong oscillations in gridblock properties associated with the steep front moving through the reservoir. In addition, an extraordinarily tight tolerance was required in the backward integration to obtain accurate adjoints. We believe the small-scale oscillations in the objective function result from the large oscillations in gridblock properties associated with the front moving through the reservoir. Other EOR processes, including surfactant EOR and near-miscible flooding, have similar sharp changes and may present similar challenges to gradient-based optimization.  相似文献   

11.
由于裂缝性油气藏具有突出的资源潜力和经济效益,利用地震方法对裂缝储层进行精细的定量描述逐渐成为勘探地球物理的关键任务之一。为了克服以往数据驱动类反演方法无法直接获得裂缝参数、而基于静态等效介质模型驱动的反演方法无法描述孔隙内部结构和流体信息的缺点,笔者提出一种基于动态等效介质模型的储层定量描述新方法。该方法通过频变AVO(amplitude variation with offset)理论建立目标函数并使用全局最优化算法反演裂缝参数。一维和二维模型测试证实,由于充分利用了反射系数频变响应对裂缝密度和时间尺度因子的敏感性,反演方法可以对裂缝储层实现有效描述。  相似文献   

12.
水库的排沙问题一直是多沙河流水库调度研究的重点之一。由于大部分多沙河流的来水来沙主要集中于汛期,因此水库汛期的蓄水兴利与泄水排沙的矛盾十分突出,具有典型的博弈关系,该关系可以利用博弈的相关理论进行描述。基于微分对策理论,将多沙河流水库汛期的供水兴利与泄水排沙看作博弈的双方,建立起以排沙和供水的综合效益作为性能指标函数的多沙河流水库汛期调度模型,研究了多沙河流水库汛期的调度问题,并通过陕西黑河某水库的实测资料对该模型进行了验证计算。计算结果表明,建立的调度模型能够较好地反映多沙河流水库汛期调度中的主要矛盾,实现对供水与排沙综合效益的优化。  相似文献   

13.
Large-scale flow models constructed using standard coarsening procedures may not accurately resolve detailed near-well effects. Such effects are often important to capture, however, as the interaction of the well with the formation can have a dominant impact on process performance. In this work, a near-well upscaling procedure, which provides three-phase well-block properties, is developed and tested. The overall approach represents an extension of a recently developed oil–gas upscaling procedure and entails the use of local well computations (over a region referred to as the local well model (LWM)) along with a gradient-based optimization procedure to minimize the mismatch between fine and coarse-scale well rates, for oil, gas, and water, over the LWM. The gradients required for the minimization are computed efficiently through solution of adjoint equations. The LWM boundary conditions are determined using an iterative local-global procedure. With this approach, pressures and saturations computed during a global coarse-scale simulation are interpolated onto LWM boundaries and then used as boundary conditions for the fine-scale LWM computations. In addition to extending the overall approach to the three-phase case, this work also introduces new treatments that provide improved accuracy in cases with significant flux from the gas cap into the well block. The near-well multiphase upscaling method is applied to heterogeneous reservoir models, with production from vertical and horizontal wells. Simulation results illustrate that the method is able to accurately capture key near-well effects and to provide predictions for component production rates that are in close agreement with reference fine-scale results. The level of accuracy of the procedure is shown to be significantly higher than that of a standard approach which uses only upscaled single-phase flow parameters.  相似文献   

14.
重磁异常数据三维人机联作模拟   总被引:5,自引:0,他引:5  
在研究三角形多面体模型重、磁异常三维正演和反演技术的基础上,吸取人机交互正演模拟的优点,实现了三角形多面体模型重、磁异常数据三维人机联作反演。通过研究三角形多面体模型节点偏导数的计算方法,对目标函数进行线性化处理,形成了计算机自动迭代修改模型体的技术。利用计算机图形技术,在三维空间显示重、磁场和模型体,开发了模型的交互修改技术,使数据解释过程中,可以结合已知信息及人的推断和经验,完成重、磁异常数据的三维模拟,减少了数据解释结果的不确定性。  相似文献   

15.
In the analysis of petroleum reservoirs, one of the most challenging problems is to use inverse theory in the search for an optimal parameterization of the reservoir. Generally, scientists approach this problem by computing a sensitivity matrix and then perform a singular value decomposition in order to determine the number of degrees of freedom i.e. the number of independent parameters necessary to specify the configuration of the system. Here we propose a complementary approach: it uses the concept of refinement indicators to select those degrees which have the greatest sensitivity to an objective function quantifying the mismatch between measured and simulated data. We apply this approach to the problem of data integration for petrophysical reservoir charaterization where geoscientists are currently working with multimillion cell geological models. Data integration may be performed by gradually deforming (by a linear combination) a set of these multimillion grid geostatistical realizations during the optimization process. The inversion parameters are then reduced to the number of coefficients of this linear combination. However, there is an infinity of geostatistical realizations to choose from which may not be efficient regarding operational constraints. Following our new approach, we are able through a single objective function evaluation to compute refinement indicators that indicate which realizations might improve the iterative geological model in a significant way. This computation is extremely fast as it implies a single gradient computation through the adjoint state approach and dot products. Using only the most sensitive realizations from a given set, we are able to resolve quicker the optimization problem case. We applied this methodology to the integration of interference test data into 3D geostatistical models.  相似文献   

16.
Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.  相似文献   

17.
In this paper, a new methodology has been developed for real-time flood management in river-reservoir systems. This methodology is based upon combining a Genetic Algorithm (GA) reservoir operation optimization model for a cascade of two reservoirs, a hydraulic-based flood routing simulation model in downstream river system, a Geographical Information System (GIS) based database, and application of K-Nearest Neighbor (K-NN) algorithm for development of optimal operating rules. The GA optimization model estimates the optimal hourly reservoirs’ releases to minimize the flood damages in the downstream river. GIS tools have also been used for specifying different land-uses and damage functions in the downstream floodplain and it has been linked to the unsteady module of HEC-RAS flood routing model using Hec-GeoRAS module. An innovative approach has also been developed using K-NN algorithm to formulate the optimal operating rules for a system of two cascade reservoirs based on optimal releases obtained from the optimization model. During a flood event, the K-NN algorithm searches through the historical flood hydrographs and optimal reservoir storages determined by the optimization model to find similar situations. The similarity between the hydrographs is quantified based on the slopes of rising and falling limbs of inflow hydrographs and reservoir storages at the beginning of each hourly time step during the flood events for two cascade reservoirs. The developed methodology have been applied to the Bakhtiari and Dez River-Reservoir systems in southwest of Iran. The results show that the proposed models can be effectively used for flood management and real-time operation of cascade river-reservoir systems.  相似文献   

18.
19.
发育垂直定向排列裂缝的地下岩石可等效为具有水平对称轴的横向各向同性(horizontal transverse isotropic,HTI)介质。针对HTI介质模型,本文研究了裂缝型储层的各向异性参数地震振幅随方位角变化(amplitude variations with azimuth,AVAZ)的反演方法。首先,在地震AVAZ反演流程中,提出采用模拟退火粒子群优化算法实现裂缝型储层各向异性参数反演。之后,通过理论模型测试,验证了基于模拟退火粒子群优化算法的地震AVAZ反演的有效性。最后,将反演方法应用于四川盆地龙马溪组页岩气储层实际方位地震数据;在反演之前先利用傅里叶级数方法估计裂缝方位并对实际数据进行方位校正,以提供更准确的输入数据;通过计算得到的P波、S波各向异性参数可用于评价裂缝发育程度。反演结果表明,研究区域构造顶部裂缝较发育,与地质基本理论一致,验证了反演方法的合理性。  相似文献   

20.
This paper describes a novel approach for creating an efficient, general, and differentiable parameterization of large-scale non-Gaussian, non-stationary random fields (represented by multipoint geostatistics) that is capable of reproducing complex geological structures such as channels. Such parameterizations are appropriate for use with gradient-based algorithms applied to, for example, history-matching or uncertainty propagation. It is known that the standard Karhunen–Loeve (K–L) expansion, also called linear principal component analysis or PCA, can be used as a differentiable parameterization of input random fields defining the geological model. The standard K–L model is, however, limited in two respects. It requires an eigen-decomposition of the covariance matrix of the random field, which is prohibitively expensive for large models. In addition, it preserves only the two-point statistics of a random field, which is insufficient for reproducing complex structures. In this work, kernel PCA is applied to address the limitations associated with the standard K–L expansion. Although widely used in machine learning applications, it does not appear to have found any application for geological model parameterization. With kernel PCA, an eigen-decomposition of a small matrix called the kernel matrix is performed instead of the full covariance matrix. The method is much more efficient than the standard K–L procedure. Through use of higher order polynomial kernels, which implicitly define a high-dimensionality feature space, kernel PCA further enables the preservation of high-order statistics of the random field, instead of just two-point statistics as in the K–L method. The kernel PCA eigen-decomposition proceeds using a set of realizations created by geostatistical simulation (honoring two-point or multipoint statistics) rather than the analytical covariance function. We demonstrate that kernel PCA is capable of generating differentiable parameterizations that reproduce the essential features of complex geological structures represented by multipoint geostatistics. The kernel PCA representation is then applied to history match a water flooding problem. This example demonstrates that kernel PCA can be used with gradient-based history matching to provide models that match production history while maintaining multipoint geostatistics consistent with the underlying training image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号