首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 P–V–T measurements on magnesite MgCO3 have been carried out at high pressure and high temperature up to 8.6 GPa and 1285 K, using a DIA-type, cubic-anvil apparatus (SAM-85) in conjunction with in situ synchrotron X-ray powder diffraction. Precise volumes are obtained by the use of data collected above 873 K on heating and in the entire cooling cycle to minimize non-hydrostatic stress. From these data, the equation-of-state parameters are derived from various approaches based on the Birch-Murnaghan equation of state and on the relevant thermodynamic relations. With K′0 fixed at 4, we obtain K0=103(1) GPa, α(K−1)=3.15(17)×10−5 +2.32(28)×10−8 T, (∂KT/∂T)P=−0.021(2) GPaK−1, (dα/∂P)T=−1.81×10−6 GPa−1K−1 and (∂KT/∂T)V= −0.007(1) GPaK−1; whereas the third-order Birch-Murnaghan equation of state with K′0 as an adjustable parameter yields the following values: K0=108(3) GPa, K′0=2.33(94), α(K−1)=3.08(16)×10−5+2.05(27) ×10−8 T, (∂KT/∂T)P=−0.017(1) GPaK−1, (dα/∂P)T= −1.41×10−6 GPa−1K−1 and (∂KT/∂T)V=−0.008(1) GPaK−1. Within the investigated P–T range, thermal pressure for magnesite increases linearly with temperature and is pressure (or volume) dependent. The present measurements of room-temperature bulk modulus, of its pressure derivative, and of the extrapolated zero-pressure volumes at high temperatures, are in agreement with previous single-crystal study and ultrasonic measurements, whereas (∂KT/∂T)P, (∂α/∂P)T and (∂KT/∂T)V are determined for the first time in this compound. Using this new equation of state, thermodynamic calculations for the reactions (1) magnesite=periclase+CO2 and (2) magnesite+enstatite=forsterite+CO2 are consistent with existing experimental phase equilibrium data. Received September 28, 1995/Revised, accepted May 22, 1996  相似文献   

2.
CaTiO3 perovskite has been studied at high temperature and P = 1 bar by powder x-ray diffraction and its structure refined subsequently by the Rietveld method. This Pbnm perovskite shows a decrease of orthorhombic distortion with increasing temperature as manifested by the increasing of the inter-octahedral angles towards 180°. Linear thermal expansion is observed for CaTiO3 to 1373 K; extrapolation of these data suggest a possible transition to a tetragonal or pseudo-tetragonal phase near 1600 K.A National Science Foundation Science and Technology Center  相似文献   

3.
在空气和真空条件下对α-Fe_2O_3粉末进行了从室温到1 000℃的高温原位X射线衍射研究,分别修正了空气和真空条件下赤铁矿在27~1 000℃范围内的晶胞参数,从而得到了晶胞参数随温度变化的关系和赤铁矿在空气和真空条件下的热膨胀系数,并得出了热膨胀系数与温度的关系,即赤铁矿的热膨胀系数不随温度变化。赤铁矿在空气气氛下的热膨胀系数为αa=9.603 16×10~(-6)/℃,αc=6.647 67×10~(-6)/℃,β=2.606 33/℃;真空气氛下的热膨胀系数为αa=9.006 79×10~(-6)/℃,αc=6.891 23×10~(-6)/℃,β=2.511 51/℃。  相似文献   

4.
P-V-T data of MgSiO3 orthoenstatite have been measured by single-crystal X-ray diffraction at simultaneous high pressures (in excess of 4.5 GPa) and temperatures (up to 1000 K). The new P-V-T data of the orthoenstatite, together with previous compression data and thermal expansion data, are described by a modified Birch-Murnaghan equation of state for diverse temperatures. The fitted thermoelastic parameters for MgSiO3 orthoenstatite are: thermal expansion ?α/?P with values of a=2.86(29)×10-5 K-1 and b=0.72(16)×10-8 K-2; isothermal bulk modulus K T o =102.8(2) GPa; pressure derivative of bulk modulus K′=?K/?P=10.2(1.2); and temperature derivative of bulk modulus K=?K/?T=-0.037(5) GPa/K. The derived thermal Grüneisen parameter is γ th=1.05 for ambient conditions; Anderson-Grüneisen parameter is δ T o =11.6, and the pressure derivative of thermal expansion is ?α/?P=-3.5×10-6K-1 GPa-1. From the P-V-T data and the thermoelastic equation of state, thermal expansions at two constant pressures of 1.5 GPa and 4.0 GPa are calculated. The resulting pressure dependence of thermal expansion is Δα/ΔP=-3.2(1)× 10-6 K-1 GPa-1. The significantly large values of K′, K, δ T and ?α/?P indicate that compression/expansion of MgSiO3 orthoenstatite is very sensitive to changes of pressure and temperature.  相似文献   

5.
The structure of deuterated portlandite, Ca(OD)2, has been investigated using time-of-flight neutron diffraction at pressures up to ∼4.5 GPa and temperatures up to ∼823 K. Rietveld analysis of the data reveals that with increasing pressure, unit-cell parameter c decreases at a rate about 4.5 times larger than that for a, which is largely due to rapid contraction of the interlayer spacing in this pressure range. Fitting of the determined cell volumes to the third-order Birch–Murnaghan equation of state yields a bulk modulus (K 0) of 32.2 ± 1.0 GPa and its first derivative (K 0′) of 4.4 ± 0.6. Moreover, on compression, hydrogen-mediated interatomic interactions within the interlayer become strengthened, as reflected by decreases in interlayer D···O and D···D distances with increasing pressure. Correspondingly, D–D, the distance between the three equivalent sites over which D is disordered, increases, suggesting a pressure-induced hydrogen disorder. This behavior is similar to that reported in brucite at elevated pressure. On heating at ∼2.1 GPa, cell parameter c increases more rapidly than a, as expected. However, because of the pressure effect, the thermal expansion coefficients, particularly along c, are much smaller than those at ambient pressure. With increasing temperature, the three partially occupied D sites become further apart, and the D-mediated interactions, mainly the interlayer D···D repulsion, become weakened.  相似文献   

6.
用X射线衍射分析的方法测定了12个田黄样品,其中,青田石1个,寿山石9个,昌化田黄石2个。确定青田石由叶蜡石(58%)、绢云母(36.1%)和高岭石(5.9%)组成;昌化田黄石由迪开石组成;寿山石分别由迪开石、高岭石、叶蜡石及绢云母组成。  相似文献   

7.
 Synthetic Zn-ferrite (ideally ZnFe2O4; mineral name: franklinite) was studied up to 37 GPa, by X-ray powder diffraction at ESRF (Grenoble, France), on the ID9 beamline; high pressure was achieved by means of a DAC. The P-V equation of state of franklinite was investigated using the Birch-Murnaghan function, and the elastic properties thus inferred [K0 = 166.4(±3.0) GPa K0  = 9.3(±0.6) K0  = −0.22 GPa−1] are compared with earlier determinations for MgAl-spinel and magnetite. The structural behaviour of Zn-ferrite as a function of pressure was studied by Rietveld refinements, and interpreted in the light of a phase transition from spinel to either CaTi2O4- or MnFe2O4-like structure; this transformation occurs above 24 GPa. Received: 15 March 1999 / Accepted: 22 April 2000  相似文献   

8.
 Synchrotron X-ray powder diffraction experiments at high pressure conditions (0.0001–13 GPa) were performed at ESRF (Grenoble-F), on the beamline ID9, to investigate the bulk elastic properties of natural P2/n-omphacites, with quasi-ideal composition. The monoclinic cell parameters a, b, c and β were determined as a function of pressure, and their compressibility coefficients are 0.00277(7), 0.00313(8), 0.00292(5) and 0.00116(4) GPa−1, respectively. The third-order Birch-Murnaghan equation of state was used to interpolate the experimental PV data, obtaining K 0=116.6(±2.5) GPa and K0=6.03(±0.60). K 0 was also determined by means of the axial and angular compressibilities [122.5(±1.7) GPa], and of the finite Lagrangian strain theory [121.5(±1.0) GPa]. The discrepancies on K 0 are discussed in the light of a comparison between techniques to determine the bulk modulus of crystalline materials from static compression diffraction data. Received: 22 February 2000 / Accepted: 10 July 2000  相似文献   

9.
10.
11.
The crystal structures of natural jadeite, NaAlSi2O6, and synthetic kosmochlor, NaCrSi2O6, were studied at room temperature, under hydrostatic conditions, up to pressures of 30.4 (1) and 40.2 (1) GPa, respectively, using single-crystal synchrotron X-ray diffraction. Pressure–volume data have been fit to a third-order Birch–Murnaghan equation of state yielding V 0 = 402.5 (4) Å3, K 0 = 136 (3) GPa, and K 0  = 3.3 (2) for jadeite and V 0 = 420.0 (3) Å3, K 0 = 123 (2) GPa and K 0  = 3.61 (9) for kosmochlor. Both phases exhibit anisotropic compression with unit-strain axial ratios of 1.00:1.95:2.09 for jadeite at 30.4 (1) GPa and 1:00:2.15:2.43 for kosmochlor at 40.2 (1) GPa. Analysis of procrystal electron density distribution shows that the coordination of Na changes from 6 to 8 between 9.28 (Origlieri et al. in Am Mineral 88:1025–1032, 2003) and 18.5 (1) GPa in kosmochlor, which is also marked by a decrease in unit-strain anisotropy. Na in jadeite remains six-coordinated at 21.5 (1) GPa. Structure refinements indicate a change in the compression mechanism of kosmochlor at about 31 GPa in both the kinking of SiO4 tetrahedral chains and rate of tetrahedral compression. Below 31 GPa, the O3–O3–O3 chain extension angle and Si tetrahedral volume in kosmochlor decrease linearly with pressure, whereas above 31 GPa the kinking ceases and the rate of Si tetrahedral compression increases by greater than a factor of two. No evidence of phase transitions was observed over the studied pressure ranges.  相似文献   

12.
High-temperature Raman spectra and thermal expansion of tuite, γ-Ca3(PO4)2, have been investigated. The effect of temperature on the Raman spectra of synthetic tuite was studied in the range from 80 to 973 K at atmospheric pressure. The Raman frequencies of all observed bands for tuite continuously decrease with increasing temperature. The quantitative analysis of temperature dependence of Raman bands indicates that the changes in Raman frequencies for stretching modes (ν3 and ν1) are faster than those for bending modes (ν4 and ν2) of PO4 in the present temperature range, which may be attributed to the structural evolution of PO4 tetrahedron in tuite at high temperature. The thermal expansion of tuite was examined by means of in situ X-ray diffraction measurements in the temperature range from 298 to 923 K. Unit cell parameters and volume were analyzed, and the thermal expansion coefficients were obtained as 3.67 (3), 1.18 (1), and 1.32 (3) × 10?5 K?1 for V, a, and c, respectively. Thermal expansion of tuite shows an axial anisotropy with a larger expansion coefficient along the c-axis. The isothermal and isobaric mode Grüneisen parameters and intrinsic anharmonicity of tuite have been calculated by using present high-temperature Raman spectra and thermal expansion coefficient combined with previous results of the isothermal bulk modulus and high-pressure Raman spectra.  相似文献   

13.
高温高压下石膏脱水相变的原位拉曼光谱研究   总被引:1,自引:0,他引:1  
周兴志  郑海飞孙樯 《岩石学报》2006,22(12):3047-3051
本文运用激光拉曼光谱仪,利用水热金刚石压腔装置对高温高压条件下石膏-水体系中的石膏脱水相变进行拉曼光谱研究.在压力0.1 MPa~837.9 MPa和温度16~200 ℃条件下通过系列实验对相变的过程进行了原位光谱分析.与人们已知的无水条件下石膏分两步脱水的过程不同,高压下石膏在饱和水环境下倾向于一次性的脱去所有结晶水而形成无水石膏,实验中没有观察到半水石膏的出现.通过实验数据得到石膏和无水石膏的转折温度和平衡压力间的关系式为P(MPa)=19.56·T(℃)-2926.5.  相似文献   

14.
Carrara大理岩高温高压变形实验研究   总被引:1,自引:0,他引:1  
利用高精度的Paterson高温高压流变仪对Carrara大理岩在高温(873~1173K)高压(~300MPa)以及约10-6~10-3s-1应变速率下进行了三轴压缩变形实验。结果表明,在等应变速率条件下,其强度随着温度的升高而降低;在等温和等压条件下,其强度随着应变速率的增加先快速增加而后缓慢增加。在应变速率对差应力的双对数投图中,我们发现随着温度的升高拟合直线的斜率减小,并且在873K和高应变速率时973K温度下Carrara大理岩的流变本构方程服从指数律变化关系;而在高温(1073K和1173K)和973K低应变速率条件下Carrara大理岩的应力指数n为5.3~7.7,且服从幂次律变化关系。因此,Carrara大理岩在本研究的实验条件下主要有两种变形机制,一种是用指数律表示的高应力变形机制;另一种是用幂次律表示的中等应力变形机制。  相似文献   

15.
The compressibility of antigorite has been determined up to 8.826(8) GPa, for the first time by single crystal X-ray diffraction in a diamond anvil cell, on a specimen from Cerro del Almirez. Fifteen pressure–volume data, up to 5.910(6) GPa, have been fit by a third-order Birch–Murnaghan equation of state, yielding V 0 = 2,914.07(23) Å3, K T0 = 62.9(4) GPa, with K′ = 6.1(2). The compression of antigorite is very anisotropic with axial compressibilities in the ratio 1.11:1.00:3.22 along a, b and c, respectively. The new equation of state leads to an estimation of the upper stability limit of antigorite that is intermediate with respect to existing values, and in better agreement with experiments. At pressures in excess of 6 GPa antigorite displays a significant volume softening that may be relevant for very cold subducting slabs.  相似文献   

16.
Combining a miniature diamond-anvil pressure cell with a single crystal four-circle diffractometer, the crystal structure of a synthetic ZrO2 has been studied in situ up to 51 kbar at room temperature. The space group of the unquenchable orthorhombic high pressure phase is Pbcm. The directions of the b and c axes are preserved through the transition and the transformation is displacive. The coordination configurations of the Zr atoms and oxygen atoms are the same in the high pressure and low pressure phases. The orthorhombic high pressure phase has a higher entropy than that of low pressure monoclinic phase.  相似文献   

17.
 The crystal structure of intermediate incommensurate tridymite was refined at 150 °C from powder data. Upon cooling from above 220 °C, the basic structure with space group symmetry C2221 is gradually distorted from orthorhombic to monoclinic symmetry. With decreasing temperature, the monoclinic angle γ smoothly opens up to 90.3°, while a displacive modulation with temperature-dependent wavelength develops. The 3 + 1 dimensional superspace group of the incommensurate phase is C1121(αβ0). The modulation mainly consists of two sinusoidal transverse displacement waves for the silicon atoms coupled to rotations of the rigid SiO4/2 tetrahedra. The wave vector is r=0.1192(1)a* − 0.0043(1)b* at 150 °C. Below 150 °C tridymite discontinuously transforms to another orthorhombic phase and the modulation partially locks in at the wave vector r 1=1/3a*. Simultaneously, an additional incommensurate modulation with r 2= 0.0395(1)b* − 0.3882(1)c* is formed. The two-dimensional modulation does not vary significantly with the temperature. Received: 13 September 2000 / Accepted: 29 January 2001  相似文献   

18.
I332/I422,the intensity ratio of powder diffraction,is highly sensitive to variations in garnet compositon and can be taken as an identification criterion for pyrope:I332/I422-1 for pyrope while it is much smaller than unit for other members of the garnet group.  相似文献   

19.
The effects of low-temperature on the crystal structure of a natural epidote [Ca1.925Fe0.745Al2.265Ti0.004Si3.037O12(OH), a = 8.8924(7), b = 5.6214(3), c = 10.1547(6)? and β = 115.396(8)° at room conditions, Sp. Gr. P21 /m] have been investigated with a series of structure refinements down to 100 K on the basis of X-ray single-crystal diffraction data. The reflection conditions confirm that the space group is maintained within the T-range investigated. Structural refinements at all temperatures show the presence of Fe3+ at the octahedral M(3) site only [%Fe(M3) = 70.6(4)% at 295 K]. Only one independent proton site was located and two possible H-bonds occur, with O(10) as donor and O(4) and O(2) as acceptors. The H-bonding scheme is maintained down to 100 K and is supported by single crystal room-T polarised FTIR data. FTIR Spectra over the region 4,000–2,500 cm−1 are dominated by the presence of a strongly pleochroic absorption feature which can be assigned to protonation of O(10)–O(4). Previously unobserved splitting of this absorption features is consistent with a NNN influence due to the presence of Al and Fe3+ on the nearby M(3) site. An additional relatively minor absorption feature in FTIR spectra can be tentatively assigned to protonation of O(10)–O(2). Low-T does not affect significantly the tetrahedral and octahedral bond distances and angles, even when distances are corrected for “rigid body motions”. A more significant effect is observed for the bond distances of the distorted Ca(1)- and Ca(2)-polyhedra, especially when corrected for “non-correlated motion”. The main low-T effect is observed on the vibrational regime of the atomic sites, and in particular for the two Ca-sites. A significant reduction of the magnitude of the thermal displacement ellipsoids, with a variation of U eq (defined as one-third of the trace of the orthogonalised U ij tensor) by ~40% is observed for the Ca-sites between 295 and 100 K. Within the same T-range, the U eq of the octahedral and oxygen sites decrease similarly by ~35%, whereas those of the tetrahedral cations by ~22%.  相似文献   

20.
A refined set of Mössbauer parameters (isomer shifts, quadrupole splittings, Fe2+/Fe3+ ratios) and lattice parameters were obtained from annites synthesized hydrothermally at pressures between 3 and 5 kbars, temperatures ranging from 250 to 780° C and oxygen fugacities controlled by solid state buffers (NNO, QMF, IM, IQF). Mössbauer spectra showed Fe2+ and Fe3+ on both the M1 and the M2 site. A linear relationship between Fe3+ content and oxygen fugacity was observed. Towards low Fe3+ values this linear relationship ends at ≈10% of total iron showing that the Fe3+ content cannot be reduced further even if more reducing conditions are used. This indicates that in annite at least 10% Fe2+ are substituted by Fe3+ in order to match the larger octahedral layer to the smaller tetrahedral layer. IR spectra indicate that formation of octahedral vacancies plays an important role for charge balance through the substitution 3 Fe2+ → 2 Fe3+ + ?(oct).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号