首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Recent models for the post-750 Ma Rodinian supercontinent dispersal (e.g. Hoffman, 1991) envision that cratons margined by Grenvillian belts, were reorganized before ca 540 Ma to form the Gondwanan supercontinent. Laurentia and Baltica distanced themselves from Gondwana by moving out of the Rodinian cratonal cluster. West Gondwana, of which Avalon was a part during the late Proterozoic to Cambrian cratonal assembly, consisted mainly of Africa and South America.The main geological evidence is presented for: (1) a transition from continental platform conditions to those of a subduction-related volcanic arc regime in Late Proterozoic time during the dispersal of the Rodinian supercontinent, and the resulting assembly of the Gondwanan supercontinent; and (2) a second transition that marked a reversal from the volcanic arc regime to marine platformal environments by early Cambrian time.Evidence for progressive instability of the continental shelf margining the Rodinian supercontinent is contained in late Proterozoic olistostromes, mylonite zones, calc-alkaline magmatism, and arc-derived clastic rocks, some being glacigenic, during three phases of the Avalonian orogeny.By early Cambrian time the reversal from a tectonically unstable volcanic arc regime to more stable platformal conditions took place as Avalon, Armorica and related microcontinental blocks rifted from Gondwana. These Gondwanan fragments sequentially come into collision, first with each other and Baltica, and then with Laurentia in Mid to Late Paleozoic time as Pangaea was being assembled.  相似文献   

2.
A method developed recently for constructing tectonic subsidence curves in early Paleozoic miogeoclines has produced new evidence for the breakup of a late Proterozoic supercontinent. Tectonic subsidence analyses in miogeoclines of eastern and western North America, northwestern Argentina, the Middle East and northwestern Australia limit the timing of the continental breakup to between 625 and 555 Ma. These results refine the implications of a much broader range of radiometric ages of rift-related igneous rocks and biostratigraphic ages of the transition from active extension to passive subsidence in miogeoclines.

The recognition of the timing and extent of rifting has led to testable hypotheses for latest Proterozoic and early Paleozoic continental histories. Breakup and onset of drift along an extensive system of continental fractures within a relatively short period of time would generate a large amount of young ocean floor, thereby reducing the volume of the global ocean basin and causing a sea level rise. Maximum reduction of ocean basin volume would postdate the time of breakup, probably by about 70 m.y., placing the transgressive peak at a time not older then about 510–520 Ma. That age agrees well with the time of maximum flooding on the continents close to the end of the Cambrian. Restriction of the breakup to between 625 and 555 Ma reduces the time gap between an essentially intact late Proterozoic supercontinent and the oldest reliable paleomagnetic reconstruction of the dispersed continents at about 560 Ma. A continental reconstruction produced by rotating Laurentia and Baltica into Gondwana a minimum distance from the 560 Ma position is consistent with limited geologic data. However, that reconstruction places Laurentia and Baltica in low latitudes which is difficult to reconcile with the absence of evaporites in syn-rift complexes in both continents.  相似文献   


3.
Suturing of the supercontinent Rodinia in the Grenville event (˜ 1000 Ma) was followed by rifting in the late Proterozoic (˜ 800-700 Ma), reorganization to Gondwana in the Pan-African (˜ 700-500 Ma) and further accretion to develop Pangea at the end of the Paleozoic. One of the Rodinian rifts followed part of the Grenville suture, it produced the margin of eastern North America and southern Baltica and the contrasting margin of west Gondwana in present South America. The Paleozoic accretionary wedge against the Grenville-age margin of North America and Baltica contains Avalonian/Cadomian terranes that exhibit Pan-African erogenic events ± sediments apparently developed while the terranes were in or near Gondwana. These terranes carry lower-Paleozoic fauna (Acado-Baltic) that are not indigenous to North America and Baltica.U---Pb zircon ages range from 1500-1000 Ma in Grenville terranes and from 800–500 Ma with minor inheritance in Avalonian terranes; they are generally much older in Cadomian terranes, implying very little resetting during Pan-African events. TDM ages are generally 2000–1200 Ma in Grenville terranes, 1300–600 Ma in Avalonian terranes and 2000–1200 in Cadomian terranes. These summary data show that: (1) the Grenville orogenic event produced almost no juvenile crust; (2) the Avalonian terranes of North America contain crust that evolved primarily in the late Proterozoic, possibly as a mixture of juvenile Pan-African material and Grenville or slightly older material; (3) the Cadomian terranes of Europe consist of old (middle-Proterozoic to Archean) crust with minor juvenile Pan-African material. The Avalonian terranes apparently evolved near, and partly on, the Grenville-age crust now in South America during the intense orogeny associated with rotation of Gondwana away from North America. The Cadomian terranes of Europe, however, appear to be fragments of other parts of Gondwana, probably West Africa.  相似文献   

4.
The Caledonian geology of western Ireland records the collision of two arc complexes with the Laurentian Margin during the closure of the Iapetus Ocean. An earlier complex collided with this hitherto passive margin in the mid-Ordovician during the Grampian Orogeny. Subsequently, arc magmatism developed along the Laurentian margin and continued until the late Silurian collision between Laurentian and Avalonia. The Ordovician volcanic and sedimentary rocks comprising the South Connemara Group lie along the Southern Uplands Fault, the terrane boundary separating these two arc complexes. Palaeontological dating indicates an Arenig-Llanvirn age for part of this complex (Williams, Armstrong and Harper, 1988), making it contemporaneous with the earlier arcs. However, most authors correlate this complex with the northern belt of the Southern Uplands (Morris, 1983; Williams, D.M., 1984. The stratigraphy and sedimentology of the Ordovician Party Group, south-eastern Murrisk, Ireland. Geological Journal, 19, 173–186; Williams et al., 1988), associated with post-Grampian subduction of north directed polarity. We present new field evidence that the South Connemara Group is tectonically disrupted by bedding parallel shear zones and that contacts previously interpreted as conformable are marked by units of tectonic mélange. We present structural and provenance arguments consistent with the mélanges forming above a north-dipping subduction zone after 463Ma. This Group is reinterpreted as occurring within a subduction–accretion complex that was generated by the accretion of early Ordovician mafic seamounts into a post-Grampian trench, thus reconciling the age of the Group with its generally accepted tectonic setting. We discuss the regional significance of this finding with respect to the Caledonide-Appalachian orogeny and argue that this is the site along which the Iapetus Ocean closed.  相似文献   

5.
Recognition of the eastern (Avalonian) margin of the northern Appalachian orogen as a Late Precambrian microcontinental arc terrane, rather than the opposing passive margin of the Proto-Atlantic (Iapetus) Ocean to that of eastern Laurentia, constituted a fundamental advance in Appalachian geology that profoundly influenced subsequent models for the orogen's plate tectonic evolution. This advance was first clearly articulated by Nick Rast and his students in 1976, who, by correlating rocks of the Avalon Platform with those of the British Midlands, established the Avalonian volcanic belt as a Japan-like microcontinent. Contrary to contemporary views of the Avalon Platform, which favored an extensional, Basin and Range-like setting for its volcanism, Rast argued on the basis of this correlation that the association of Avalonian volcanism with compressional orogeny, widespread calc-alkaline plutonism and, in Angelsey, with blueschists and ophiolitic rocks, indicated a convergent plate margin setting. Rast further proposed that the Avalonian volcanic belt was ensialic, and was bordered to the northwest and southeast by Precambrian oceanic domains. Contemporary reconstructions of the Avalonian and Cadomian belts as fragments of a Cordilleran-like accretionary orogen that developed along an active margin of Neoproterozoic Gondwana owe their origin to these early ideas and, while far removed from the tectonic model that Rast envisaged, are a direct heritage of his recognition of the Avalonian volcanic belt as a microcontinental arc terrane.  相似文献   

6.
Pacific-type orogeny revisited: Miyashiro-type orogeny proposed   总被引:30,自引:0,他引:30  
Shigenori  Maruyama 《Island Arc》1997,6(1):91-120
Abstract The concept of Pacific-type orogeny is revised, based on an assessment of geologic data collected from the Japanese Islands during the past 25 years. The formation of a passive continental margin after the birth of the Pacific Ocean at 600 Ma was followed by the initiation of oceanic plate subduction at 450 Ma. Since then, four episodes of Pacific-type orogeny have occurred to create an orogenic belt 400 km wide that gradually grew both oceanward and downward. The orogenic belt consists mainly of an accretionary complex tectonically interlayered with thin (<2 km thick), subhorizontal, high-P/T regional metamorphic belts. Both the accretionary complex and the high-P/T rocks were intruded by granitoids ~100 million years after the formation of the accretionary complex. The intrusion of calc-alkaline (CA) plutons was synchronous with the exhumation of high-P/T schist belts. Ages from microfossils and K-Ar analysis suggest that the orogenic climax happened at a time of mid-oceanic ridge subduction. The orogenic climax was characterized by the formation of major subhorizontal orogenic structures, the exhumation of high-P/T schist belts by wedge extrusion and subsequent domed uplift, and the intrusion-extrusion of CA magma dominantly produced by slab melting. The orogenic climax ended soon after ridge subduction, and thereafter a new Pacific-type orogeny began. A single Pacific-type orogenic cycle may correspond to the interaction of the Asian continental margin with one major Pacific oceanic plate. Ophiolites in Japan occur as accreted material and are not of island-arc but of plume origin. They presumably formed after the birth of the southern Pacific superplume at 600 Ma, and did not modify the cordilleran-type orogeny in a major way. Microplates, fore-arc slivers, intra-oceanic arc collisions and the opening of back-arc basins clearly contributed to cordilleran orogenesis. However, they were of secondary importance and served only to modify pre-existing major orogenic components. The most important cause of cordilleran-type orogeny is the subduction of a mid-oceanic ridge, by which the volume of continental crust increases through the transfer of granitic melt from the subducting oceanic crust to an orogenic welt. Accretionary complexes are composed mainly of recycled granitic sediments with minor amounts of oceanic material, which indicate that the accretion of oceanic material, including huge oceanic plateaus, was not significant for orogenic growth. Instead, the formation and intrusion of granitoids are the keys to continental growth, which is the most important process in Pacific-type orogeny. Collision-type orogeny does not increase the volume of continental crust. The name ‘Miyashiro-type orogeny’ is proposed for this revised concept of Pacific-type or cordilleran-type orogeny, in order to commemorate Professor A. Miyashiro's many contributions to a better understanding of orogenesis.  相似文献   

7.
Summary Field mapping, analysis of borehole core and studies of geophysical potential field and seismic data can be used to demonstrate the existence of a number of distinct crustal blocks within Eastern Avalonia beneath eastern England and the southern North Sea. At the core of these blocks is the Midlands Microcraton which is flanked by Ordovician volcanic arc complexes exposed in Wales and the Lake District. A possible volcanic arc complex of comparable age in eastern England is concealed by late Palaeozoic and Mesozoic cover. These volcanic arc complexes resulted from subduction of oceanic lithosphere beneath Avalonia prior to collision with Baltica and Laurentia in late Ordovician and Silurian time, respectively. The nature of the crust north and east of the concealed Caledonides of Eastern England and south of the lapetus Suture/Tornquist Sea Suture, which forms the basement to the southern North Sea, is unclear. Late Ordovician metamorphic ages from cores penetrating deformed metasedimentary rocks on the Mid-North Sea High suggest these rocks were involved in Avalonia-Baltica collision before final closure of the lapetus Ocean between Laurentia and Avalonia.  相似文献   

8.
24 SmNd isotope analyses of fine-grained Phanerozoic and modern clastic sediments from Britain and Quebec are presented. In combination with published data, they have been used to calculate “crustal residence ages” (tCR) and to assess the provenance of the British sedimentary mass. Sediments now preserved on either side of the suture formed by the closure of the Iapetus Ocean ca. 400 Ma ago were derived from isotopically distinct source regions. Sediments north of the suture are characterised by1.7 < tCR < 2.8 Ga, whereas those to the south exhibit a smaller range and an average value of 1.6 Ga. The northern and southern source regions were most probably Laurentia and Gondwana respectively. It seems likely that a third source, perhaps Baltica, provided the lower Palaeozoic Southern Uplands succession. Sediments deposited in southern Britain after the closure of Iapetus were derived mainly from the recycling of older sediments. The tectonic rearrangements which occurred during the Phanerozoic are not reflected in the SmNd isotopic structure of the southern British sedimentary mass, suggesting that the Caledonian and Hercynian orogenies, and even the Grenville orogeny, involved minimal accretion of new mantle-derived material into the British and adjacent continental crust. SmNd analyses of fine-grained clastic sediments provide a powerful sedimentological tool for elucidating palaeogeography, clastic source areas, sediment recycling and maturity, and some aspects of sediment transport.  相似文献   

9.
Nd and Sr isotopic variations of Early Paleozoic oceans   总被引:4,自引:0,他引:4  
We report143Nd/144Nd and87Sr/86Sr isotopic data for Lower Paleozoic phosphatic brachiopod and conodont fossils. The data appear to represent the isotopic values of Early Paleozoic seawaters. We show that different paleoceanic water masses can be distinguished on the basis of their εNd signatures. Two sides of what is classically considered one circulating Iapetus Ocean have different εNd signatures from at least the Middle Cambrian until the Late Middle Ordovician. We infer two ocean basins between North America and Baltica separated by an island and/or shoal circulation barrier. Thus, it appears necessary to redefine the area of the Iapetus Ocean. The εNd signature of the redefined smaller Iapetus Ocean ranges from −5 to −9 and the εNd signature of the larger, coeval Panthalassa Ocean, including part of what was formerly called the Iapetus Ocean, ranges from −10 to −20. The first time that the εNd values are identical in these two water masses is coincident with the onset of the Taconic Orogeny of North America. The paleogeographic geometry we infer from this work is consistent with paleogeographic reconstructions having the Baltica continent at very high latitudes in the Early/Middle Ordovician. The εNd and faunal distribution support temperature-controlled conodont faunal provinciality. A rough mean age for exposed continental crust in the Early Paleozoic can be obtained from the average εNd value of Early Paleozoic Oceans. The data suggest that the mean age of the crust as a function of time has remained essentially constant or even decreased during the past 500 Ma, and suggest substantial additions of new crust to the continents through the Phanerozoic.  相似文献   

10.
A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129–218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as “Avalonia”, which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the “Sandy Hook basin”, and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the “Sandy Hook basin” is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies.  相似文献   

11.
Abstract A series of paleogeographic maps of the Japanese Islands, from their birth at ca 750–700 Ma to the present, is newly compiled from the viewpoint of plate tectonics. This series consists of 20 maps that cover all of the major events in the geotectonic evolution of Japan. These include the birth of Japan at the rifted continental margin of the Yangtze craton ( ca 750-700 Ma), the tectonic inversion of the continental margin from passive to active ( ca 500 Ma), the Paleozoic accretionary growth incorporating fragments from seamounts and oceanic plateaux ( ca 480-250 Ma), the collision between Sino-Korea and Yangtze (250–210 Ma), the Mesozoic to Cenozoic accretionary growth (210 Ma-present) including the formation of the Cretaceous paired metamorphic belts (90 Ma), and the Miocene back-arc opening of the Japan Sea that separated Japan as an island arc (25-15 Ma).  相似文献   

12.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

13.
Tethyan ophiolites and Pangea break-up   总被引:6,自引:0,他引:6  
Abstract The break‐up of Pangea began during the Triassic and was preceded by a generalized Permo‐Triassic formation of continental rifts along the future margins between Africa and Europe, between Africa and North America, and between North and South America. During the Middle–Late Triassic, an ocean basin cutting the eastern equatorial portion of the Pangea opened as a prograding branch of the Paleotethys or as a new ocean (the Eastern Tethys); westwards, continental rift basins developed. The Western Tethys and Central Atlantic began to open only during the Middle Jurassic. The timing of the break‐up can be hypothesized from data from the oceanic remnants of the peri‐Mediterranean and peri‐Caribbean regions (the Mesozoic ophiolites) and from the Atlantic ocean crust. In the Eastern Tethys, Middle–Late Triassic mid‐oceanic ridge basalt (MORB) ophiolites, Middle–Upper Jurassic MORB, island arc tholeiite (IAT) supra‐subduction ophiolites and Middle–Upper Jurassic metamorphic soles occur, suggesting that the ocean drifting was active from the Triassic to the Middle Jurassic. The compressive phases, as early as during the Middle Jurassic, were when the drifting was still active and caused the ocean closure at the Jurassic–Cretaceous boundary and, successively, the formation of the orogenic belts. The present scattering of the ophiolites is a consequence of the orogenesis: once the tectonic disturbances are removed, the Eastern Tethys ophiolites constitute a single alignment. In the Western Tethys only Middle–Upper Jurassic MORB ophiolites are present – this was the drifting time. The closure began during the Late Cretaceous and was completed during the Eocene. Along the area linking the Western Tethys to the Central Atlantic, the break‐up was realized through left lateral wrench movements. In the Central Atlantic – the link between the Western Tethys and the Caribbean Tethys – the drifting began at the same time and is still continuing. The Caribbean Tethys opened probably during the Late Jurassic–Early Cretaceous. The general picture rising from the previous data suggest a Pangea break‐up rejuvenating from east to west, from the Middle–Late Triassic to the Late Jurassic–Early Cretaceous.  相似文献   

14.
Kimberlite and potassic lamprophyre dykes were intensively intruded into the early Proterozoic Nagssugtoqidian mobile belt of West Greenland during an important phase of brittle reactivation in Late Precambrian-Early Cambrian times (ca. 580-570 Ma) and during at least one other minor phase. Thermal and alternating field demagnetisation studies of 52 of these dykes identify primary components residing in the critical blocking temperature range distributed between shallow westerly and steep positive directions. Near the axis of the Proterozoic shear belt the dykes (predominantly lamprophyres) have closely grouped shallow directions with a reversal; near the margins of the shear belt dykes (predominantly kimberlites) have steeper and distributed directions. The cleaned components of magnetisation appear to be single, and the distribution of directions is interpreted to record a migration of the palaeofield axis which intersecting relationships show to have been from shallow to steep. The dyke directions are grouped to define representative mean palaeopoles of 215°E 3°N (LK1, A95 = 3.9°), 213°E 18°N (LK2, A95 = 6.1°), 203°E 46°N (LK3, A95 = 10.4°) and 259°E 54°N (LK4, A95 = 11.0°); a subsidiary direction recorded in five dykes near the southern margin of the shear belt (LK5, palaeopole at 297°E 16°S (A95 = 12.5°)) is derived entirely from lamprophyres and is possibly Silurian in age. An RbSr isochron on three lamprophyres of 1227 Ma and agreement of the remanence direction with ca. 1220 Ma rocks from elsewhere in Greenland suggests that the LK1 component is wholly or partly of that age.The remaining sequence of palaeopoles falls along the Hadrynian Polar Track and the age data relating to this track are re-evaluated. Evidence for a pre-800 Ma age is no longer valid and the new data from West Greenland confirm that the track is latest Precambrian to Early Cambrian in age. It is shown to connect poles of Late Precambrian and Lower Cambrian age and to embrace other data from the Laurentian shield. The rapid passage of the shield across the South Pole is consistent with the sedimentation sequences, and suggests a high-latitude origin for the tillite horizon of this age. The Hadrynian Track is also compared with the contemporaneous record from Gondwanaland and it is shown that the two shields were in juxtaposition in the identical reconstruction to the Proterozoic Supercontinent until earliest Cambrian times. This discovery links the Lower Cambrian marine transgression and the widespread ca. 580-560 Ma alkaline province in the Gondwanaland, Laurentian and Fennoscandian shields to major continental break up, and it conforms with evidence that the Iapetus Ocean did not open until Cambrian times.  相似文献   

15.
Seismic reflection and refraction data acquired on four transects spanning the Southeast Greenland rifted margin and Greenland–Iceland Ridge (GIR) provide new constraints on mantle thermal structure and melting processes during continental breakup in the North Atlantic. Maximum igneous crustal thickness varies along the margin from >30 km in the near-hotspot zone (<500 km from the hotspot track) to 18 km in the distal zone (500–1100 km). Magmatic productivity on summed conjugate margins of the North Atlantic decreases through time from 1800±300 to 600±50 km3/km/Ma in the near-hotspot zone and from 700±200 to 300±50 km3/km/Ma in the distal zone. Comparison of our data with the British/Faeroe margins shows that both symmetric and asymmetric conjugate volcanic rifted margins exist. Joint consideration of crustal thickness and mean crustal seismic velocity suggests that along-margin changes in magmatism are principally controlled by variations in active upwelling rather than mantle temperature. The thermal anomaly (ΔT) at breakup was modest (100–125°C), varied little along the margin, and transient. Data along the GIR indicate that the potential temperature anomaly (125±50°C) and upwelling ratio (4 times passive) of the Iceland hotspot have remained roughly constant since 56 Ma. Our results are consistent with a plume–impact model, in which (1) a plume of radius 300 km and ΔT of 125°C impacted the margin around 61 Ma and delivered warm material to distal portions of the margin; (2) at breakup (56 Ma), the lower half of the plume head continued to feed actively upwelling mantle into the proximal portion of the margin; and (3) by 45 Ma, both the remaining plume head and the distal warm layer were exhausted, with excess magmatism thereafter largely confined to a narrow (<200 km radius) zone immediately above the Iceland plume stem. Alternatively, the warm upper mantle layer that fed excess magmatism in the distal portion of the margin may have been a pre-existing thermal anomaly unrelated to the plume.  相似文献   

16.
Abrupt along-strike variations in tectonostratigraphic composition, internal structural style, and detachment level in the southern Appalachian and Ouachita foreland thrust belts are defined at a large-scale bend in strike and a truncation of Ouachita structures by the frontal Appalachian thrust fault. The along-strike variations correspond to differences in the pre-orogenic rifted Laurentian margin, in the history and nature of terrane accretion, and in the response of the foreland to these differences. Within the Ouachita embayment of the Laurentian margin, diachronous arc-continent collision migrated northwestward along a rift-stage transform margin from the Black Warrior foreland basin on the southeast in Late Mississippian time to a short-wavelength, high-amplitude foreland basin (Arkoma basin) on the northwest in front of the Ouachita thrust-belt salient in Early-Middle Pennsylvanian time. Off-shelf, deep-water strata of both passive-margin and synorogenic facies comprise an accretionary prism and subduction complex, and the Ouachita allochthon consists of mud-dominated thrust sheets that are internally disharmonic and folded. The allochthon of off-shelf strata was thrust over the passive-margin carbonate shelf, which remains in the Ouachita footwall. Along the southeast side of the Alabama promontory of the Laurentian margin, passive-margin shelf carbonates are imbricated in the Appalachian thrust belt, which is characterized by internally coherent thrust sheets and high-amplitude frontal ramps. The palinspastic extent of shelf-carbonate rocks corresponds to the extent of structurally shallow basement rocks on the upper-plate rift-stage margin of the Alabama promontory of Laurentian crust. Terranes accreted to the Laurentian margin during the Taconic and Acadian orogenies were driven over the shallow basement by continent-continent collision of Laurentia with Africa (Gondwana). Emplacement of the thrust-translated terranes tectonically stripped and replaced the shelf carbonate. The frontal thrust fault of the Appalachian thrust belt truncates the southeastern end of the slightly older frontal Ouachita thrust belt, as well as the southeastern part of the greater Black Warrior basin in the Ouachita foreland. Shallow basement beneath the Appalachian thrust belt extends cratonward beneath the low-amplitude Appalachian foreland basin.  相似文献   

17.
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced > 4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5–11.5 km. Curiously < 400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (> 600 °C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting > 28 m.y., and induced by the steep continent–ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.  相似文献   

18.
The variety of active, exhumed, and buried limestone landforms of northern England, North Wales, and the Isle of Man arises in part from the way in which Dinantian (Lower Carboniferous) sedimentation was affected by a tilt-block basement structure evolved during the closure of the Iapetus Ocean suture to the north, and partly to subsequent plate tectonic movements associated with the closure of the proto-Tethys ocean, the opening of the Atlantic Ocean and the Alpine orogeny. Landforms created during the Dinantian now form important exhumed and buried landscape features. The Permian half-graben structures of the eastern Irish Sea-Cheshire-Worcester Basins account for many of the contrasts between the upland karsts of the Pennines and the lowland karsts of coastal areas.  相似文献   

19.
The rifted Eastern Continental Margin of India (ECMI) has evolved as a result of breakup of East Gondwanaland. Previous geophysical studies of the continental margin have not elucidated upon its volcanic nature. Magnetics plays a useful role in the study of continental margins, particularly in identifying the volcanic units. The aeromagnetic map of the offshore Mahanadi basin of ECMI displays a conspicuous linear anomaly along the continental shelf. A comprehensive study of the published aeromagnetic, marine magnetic and gravity data of the offshore Mahanadi basin reveals the existence of a seaward dipping volcanic unit in the offshore Mahanadi basin bordering the Hinge zone. This inference suggests that the ECMI is a volcanic rifted margin. The study further indicates the deepening of the basement towards the sea. In addition, the existing geological studies on the ECMI demarcated the probable limit of the continental crust by studying the basement detached tectonic style of the sedimentation in sub-surface configuration of the East coast basins of India. The probable continental crustal limit, the Hinge zone, and the inner edge of the presently inferred volcanic unit conform to one another spatially in the offshore Mahanadi region. These features characterize the inferred volcanic body as seaward dipping reflectors (SDRs) that usually occur at the rifted continental margins. The deepening of the basement towards the sea and the presence of the volcanic body on the continental margin are indicative of the transitional nature of the crust. It is generally accepted that Antarctica and India were juxtaposed before the breakup of Gondwanaland. But the microcontinents in the southern Indian Ocean are neglected in the reconstruction of Gondwanaland continents. The recent studies of the discovery of continental crust within the Elan Bank (EB) microcontinent show that the EB was contiguous with the East coast of India before the breakup of Gondwanaland. Moreover, it is reported that the upper igneous crust of the EB consists of a 2–3 km thick layer of accumulated lava flows originating from the Kerguelen hotspot. An estimate shows that the total volume of volcanic and plutonic component of the Elan Bank is about 0.3 million cubic kilometers. The present inference of a volcanic body from the offshore Mahanadi basin is in agreement with the above observations of the juxtaposition of EB with ECMI.  相似文献   

20.
Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号