首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

2.
With the implementation of the Jason-1 satellite altimeter mission, the goal of reaching the 1-cm level in orbit accuracy was set. To support the Precision Orbit Determination (POD) requirements, the Jason-1 spacecraft carries receivers for DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and GPS (Global Positioning System), as well as a retroreflector for SLR (Satellite Laser Ranging). The overall orbit accuracy for Jason will depend on the quality and the relative weighting of the available tracking data. In this study, the relative importance of the SLR, DORIS, and GPS tracking data is assessed along with the most effective parameterization for accounting for the unmodeled accelerations through the application of empirical accelerations. The optimal relative weighting for each type of tracking data was examined. It is demonstrated that GPS tracking alone is capable of supporting a radial orbit accuracy for Jason-1 at the 1-cm level, and that including SLR tracking provides additional benefits. It is also shown that the GRACE (Gravity Recovery and Climate Experiment) gravity model GGM01S provides a significant improvement in the orbit accuracy and reduction in the level of geographically correlated orbit errors.  相似文献   

3.
With the implementation of the Jason-1 satellite altimeter mission, the goal of reaching the 1-cm level in orbit accuracy was set. To support the Precision Orbit Determination (POD) requirements, the Jason-1 spacecraft carries receivers for DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and GPS (Global Positioning System), as well as a retroreflector for SLR (Satellite Laser Ranging). The overall orbit accuracy for Jason will depend on the quality and the relative weighting of the available tracking data. In this study, the relative importance of the SLR, DORIS, and GPS tracking data is assessed along with the most effective parameterization for accounting for the unmodeled accelerations through the application of empirical accelerations. The optimal relative weighting for each type of tracking data was examined. It is demonstrated that GPS tracking alone is capable of supporting a radial orbit accuracy for Jason-1 at the 1-cm level, and that including SLR tracking provides additional benefits. It is also shown that the GRACE (Gravity Recovery and Climate Experiment) gravity model GGM01S provides a significant improvement in the orbit accuracy and reduction in the level of geographically correlated orbit errors.  相似文献   

4.
One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies   总被引:2,自引:0,他引:2  
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1-2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

5.
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1–2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

6.
We have used GPS carrier phase integer ambiguity resolution to investigate improvements in the orbit determination for the Jason-1 satellite altimeter mission. The technique has been implemented in the GIPSY orbit determination software developed by JPL. The radial accuracy of the Jason-1 orbits is already near 1 cm, and thus it is difficult to detect the improvements gained when the carrier phase ambiguities are resolved. Nevertheless, each of the metrics we use to evaluate the orbit accuracy (orbit overlaps, orbit comparisons, satellite laser ranging residuals, altimeter crossover residuals, orbit centering) show modest improvement when the ambiguities are resolved. We conservatively estimate the improvement in the radial orbit accuracy is at the 10–20% level.  相似文献   

7.
TOPEX/Poseidon and Jason-1: Absolute Calibration in Bass Strait, Australia   总被引:2,自引:0,他引:2  
Updated absolute calibration results from Bass Strait, Australia, are presented for the TOPEX/Poseidon (T/P) and Jason-1 altimeter missions. Data from an oceanographic mooring array and coastal tide gauge have been used in addition to the previously described episodic GPS buoy deployments. The results represent a significant improvement in absolute bias estimates for the Bass Strait site. The extended methodology has allowed comparison between the altimeter and in situ data on a cycle-by-cycle basis over the duration of the dedicated calibration phase (formation flight period) of the Jason-1 mission. In addition, it has allowed absolute bias results to be extended to include all cycles since the T/P launch, and all Jason-1 data up to cycle 60. Updated estimates and formal 1-sigma uncertainties of the absolute bias computed throughout the formation flight period are 0 ± 14 mm for T/P and +152 + 13 mm for Jason-1 (for the GDR POE orbits). When JPL GPS orbits are used for cycles 1 to 60, the Jason-1 bias estimate is 131 mm, virtually identical to the NASA estimate from the Harvest Platform off California calculated with the GPS orbits and not significantly different to the CNES estimate from Corsica. The inference of geographically correlated errors in the GDR POE orbits (estimated to be approximately 17 mm at Bass Strait) highlights the importance of maintaining globally distributed verification sites and makes it clear that further work is required to improve our understanding of the Jason-1 instrument and algorithm behavior.  相似文献   

8.
DIODE (Doris Immediate On-board orbit DEtermination) is a series of real-time orbit determination software, which process one-way up-link Doppler measurements performed by a DORIS receiver on a satellite. The DIODE software are embedded within the DORIS receivers, and they provide orbit and time determination to the user as well as technical parameters to adjust the tracking loop within the instrument. After a first successful flight on-board SPOT4, the second generation of the family operates on-board Jason-1, with more efficient and more accurate algorithms. Similar versions have been embarked onboard SPOT5 and ENVISAT. The accuracy is between 10 and 30 centimeters RMS for the radial component, and about 50 centimeters RMS in 3D. With several Failure Detection and Incident Recovery (FDIR) enhancements implemented in the software, DIODE/Jason-1 has experienced only one anomaly in July 2004; its availability is 99.7%, after two years and a half in-orbit. This article describes the DORIS/DIODE element of the Jason-1 system. It summarizes the main results obtained from the various verification activities that concerned all parts of this navigation and time-tagging Jason-1 subsystem.  相似文献   

9.
An absolute calibration of the TOPEX/Poseidon (T/P) and Jason-1 altimeters has been undertaken during the dedicated calibration phase of the Jason-1 mission, in Bass Strait, Australia. The present study incorporates several improvements to the earlier calibration methodology used for Bass Strait, namely the use of GPS buoys and the determination of absolute bias in a purely geometrical sense, without the necessity of estimating a marine geoid. This article focuses on technical issues surrounding the GPS buoy methodology for use in altimeter calibration studies. We present absolute bias estimates computed solely from the GPS buoy deployments and derive formal uncertainty estimates for bias calculation from a single overflight at the 40-45 mm level. Estimates of the absolute bias derived from the GPS buoys is -10 ± 19 mm for T/P and +147 ± 21 mm for Jason-1 (MOE orbit) and +131 ± 21 mm for Jason-1 (GPS orbit). Considering the estimated error budget, our bias values are equivalent to other determinations from the dedicated NASA and CNES calibration sites.  相似文献   

10.
刘治中  杨俊钢  张杰  崔伟 《海洋学报》2020,42(3):129-139
Jason-3卫星高度计于2016年1月17日成功发射,2016年2月12日进入预定轨道,与Jason-2高度计同轨进入编队飞行阶段,并落后Jason-2高度计约1分20秒,两者相距约560 km。2016年9月1日,Jason-2高度计变换轨道,编队飞行阶段结束,两高度计进入平行轨道,以增加卫星高度计对地观测的空间覆盖。本研究主要开展了Jason-3高度计的数据质量的评估与检验,包括Jason-3高度计数据可用性和有效性的验证,以及Jason-3高度计和校正辐射计各参数的数据质量监测。重点开展了Jason-2与Jason-3高度计各项参数的综合比较,利用Jason-2与Jason-3高度计编队飞行阶段的数据精确评估了两高度计参数的一致性,并从全球数据角度分析了Jason-3高度计获取各参数的能力以及稳定性;通过与Jason-2互交叉点比较分析评估Jason-3高度计海面高度数据质量情况,验证Jason-3高度计数据精度。结果表明,Jason-3高度计的数据质量满足高度计测高的要求,具有与Jason-1、Jason-2、T/P等高度计相同或更高的测高精度以监测全球海平面变化,此外,Jason-3有效波高参数数据质量明显优于Jason-2高度计。  相似文献   

11.
The French Transportable Laser Ranging System (FTLRS), a highly transportable Satellite Laser Ranging (SLR) instrument, was set up in Corsica (from January to September 2002) for participating to the JASON-1 altimeter verification phase. In addition to the tracking of oceanographic satellite missions and in order to perform an accurate positioning, the FTLRS also acquired laser ranging data on geodetic satellites, STARLETTE and STELLA essentially.

The paper describes the analysis strategy mainly based on the use of a short-arc orbit technique to compute accurate 1 cm local orbits, and then the geocentric positioning (2-3 mm relative to GPS). Finally, we established the JASON-1 absolute calibration value, based on 9 SLR short-arcs (between cycles 1 and 26), at 108.2 ± 8.7 mm; the 10-day repeatability is of 26.1 mm showing that a great accuracy has been reached.  相似文献   

12.
The French Transportable Laser Ranging System (FTLRS), a highly transportable Satellite Laser Ranging (SLR) instrument, was set up in Corsica (from January to September 2002) for participating to the JASON-1 altimeter verification phase. In addition to the tracking of oceanographic satellite missions and in order to perform an accurate positioning, the FTLRS also acquired laser ranging data on geodetic satellites, STARLETTE and STELLA essentially.

The paper describes the analysis strategy mainly based on the use of a short-arc orbit technique to compute accurate 1 cm local orbits, and then the geocentric positioning (2–3 mm relative to GPS). Finally, we established the JASON-1 absolute calibration value, based on 9 SLR short-arcs (between cycles 1 and 26), at 108.2 ± 8.7 mm; the 10-day repeatability is of 26.1 mm showing that a great accuracy has been reached.  相似文献   

13.
One amazing heritage of the current altimetry missions, Jason-2, CryoSat-2 (without mentioning their predecessors TOPEX-Poseidon, ERS, Jason-1, and EnviSat) is that DORIS using DIODE On-Board Orbit Determination software calculate orbits in real-time with accuracy. For example, accuracy has been improved to 2.7 cm RMS on board DORIS/Jason-2 compared with the final Precise Orbit Ephemerides (POE) orbit, generally known to have less than 1 cm accuracy on the radial component. Simultaneously, an efficient integrity team on-ground continually monitors the health of the DORIS system.

In February 2013, SARAL/AltiKa was launched hosting a DORIS DGXX receiver with the latest LV11 software as previously used in Jason-2 and CryoSat-2. DORIS on-board SARAL has since been permanently producing results efficiently every ten seconds without exception, including during manoeuvring phases. Spacecraft, ground-system, and users are provided with real-time information on the satellite position: the accuracy is approximately 3.0 cm RMS on the radial component, which is a major break-through for Near Real-Time (NRT) processing. These results are detailed in the paper. Future DORIS/DIODE versions will be used on-board Jason-3 and Sentinel-3.  相似文献   

14.
《Marine Geodesy》2013,36(3-4):261-284
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

15.
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

16.
Since Jason-1launch, extensive validation of Jason-1 data and cross-calibration relative to TOPEX/Poseidon (T/P) have been performed by the CLS validation team within the CNES Jason-1 project. These validation activities are routinely operated as part of the Jason-1 ground segment, and often lead to in-depth studies to understand all validation conclusions. This paper presents the main results in terms of Jason-1 data quality: verification of data availability and validity, monitoring of the most relevant altimeter and radiometer parameters, assessment of the Jason-1 altimeter system performances. From global statistical analysis of more than 2 years of Jason-1 GDR data, results for all components of the altimeter measurement are derived in terms of bias, trend and precision. This work also represents a contribution to the estimation of the Jason-1 error budget. Thorough studies have been more focused on specific issues in relation to data quality: this is the case for the analysis of the high frequency content of the Jason-1 data and its impact on the T/P to Jason-1 comparison. From the results presented in this paper, it is demonstrated that the Jason-1 mission fulfils the requirements of high precision altimetry. In particular, it allows continuing the observation of the Mean Sea Level (MSL) variations at the same accuracy as T/P, which was one of the challenges of the Jason-1 mission. Potential improvements and open issues are also identified, with the objective of still making progress in terms of altimeter data quality.  相似文献   

17.
This article describes an “absolute” calibration of Jason-1 (J-1) altimeter sea surface height bias using a method developed for TOPEX/Poseidon (T/P) bias determination reported previously. The method makes use of U.K. tide gauges equipped with Global Positioning System (GPS) receivers to measure sea surface heights at the same time, and in the same geocentric reference frame, as Jason-1 altimetric heights recorded in the nearby ocean. The main time-dependent components of the observed altimeter-minus-gauge height-difference time series are due to the slightly different ocean tides at the gauge and in the ocean. The main harmonic coefficients of the tide differences are calculated from analysis of the copious TOPEX data set and then applied to the determination of T, P, and J-1 bias in turn. Datum connections between the tide gauge and altimetric sea surface heights are made by means of precise, local geoid differences from the EGG97 model. By these means, we have estimated Jason-1 altimeter bias determined from Geophysical Data Record (GDR) data for cycles 1–61 to be 12.9 cm, with an accuracy estimated to be approximately 3 cm on the basis of our earlier work. This J-1 bias value is in close agreement with those determined by other groups, which provides a further confirmation of the validity of our method and of its potential for application in other parts of the world where suitable tide gauge, GPS, and geoid information exist.  相似文献   

18.
Since Jason-1launch, extensive validation of Jason-1 data and cross-calibration relative to TOPEX/Poseidon (T/P) have been performed by the CLS validation team within the CNES Jason-1 project. These validation activities are routinely operated as part of the Jason-1 ground segment, and often lead to in-depth studies to understand all validation conclusions. This paper presents the main results in terms of Jason-1 data quality: verification of data availability and validity, monitoring of the most relevant altimeter and radiometer parameters, assessment of the Jason-1 altimeter system performances. From global statistical analysis of more than 2 years of Jason-1 GDR data, results for all components of the altimeter measurement are derived in terms of bias, trend and precision. This work also represents a contribution to the estimation of the Jason-1 error budget. Thorough studies have been more focused on specific issues in relation to data quality: this is the case for the analysis of the high frequency content of the Jason-1 data and its impact on the T/P to Jason-1 comparison. From the results presented in this paper, it is demonstrated that the Jason-1 mission fulfils the requirements of high precision altimetry. In particular, it allows continuing the observation of the Mean Sea Level (MSL) variations at the same accuracy as T/P, which was one of the challenges of the Jason-1 mission. Potential improvements and open issues are also identified, with the objective of still making progress in terms of altimeter data quality.  相似文献   

19.
Absolute Calibration of the Jason-1 Altimeter Using UK Tide Gauges   总被引:1,自引:0,他引:1  
This article describes an “absolute” calibration of Jason-1 (J-1) altimeter sea surface height bias using a method developed for TOPEX/Poseidon (T/P) bias determination reported previously. The method makes use of U.K. tide gauges equipped with Global Positioning System (GPS) receivers to measure sea surface heights at the same time, and in the same geocentric reference frame, as Jason-1 altimetric heights recorded in the nearby ocean. The main time-dependent components of the observed altimeter-minus-gauge height-difference time series are due to the slightly different ocean tides at the gauge and in the ocean. The main harmonic coefficients of the tide differences are calculated from analysis of the copious TOPEX data set and then applied to the determination of T, P, and J-1 bias in turn. Datum connections between the tide gauge and altimetric sea surface heights are made by means of precise, local geoid differences from the EGG97 model. By these means, we have estimated Jason-1 altimeter bias determined from Geophysical Data Record (GDR) data for cycles 1-61 to be 12.9 cm, with an accuracy estimated to be approximately 3 cm on the basis of our earlier work. This J-1 bias value is in close agreement with those determined by other groups, which provides a further confirmation of the validity of our method and of its potential for application in other parts of the world where suitable tide gauge, GPS, and geoid information exist.  相似文献   

20.
《Marine Geodesy》2013,36(3-4):131-146
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号