共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephen R. H. Worthington 《Hydrogeology Journal》2009,17(7):1665-1678
Laboratory experiments and numerical modeling have shown that dissolution in carbonate aquifers results in high-permeability channel networks. However, the lack of techniques to assess the extent and significance of these channel networks presents a major problem in characterizing carbonate aquifers. This problem was addressed by identifying the differences between two simulations (with and without channels) of the intensely studied limestone aquifer at Mammoth Cave (Kentucky, USA). Long-distance tracer-test results and spring discharges were used for assessing model accuracy as well as head measurements in wells. The channel simulation provided a much better calibration than the homogeneous porous-medium simulation and revealed five important differences: (1) convergent flow to large springs, (2) equipotentials forming troughs, (3) decreases in hydraulic gradient and (4) increases in hydraulic conductivity in a downgradient direction, and (5) substantial scaling effects. These five characteristics are also common in other carbonate aquifers and provide a means of identifying whether a carbonate aquifer is more similar to porous-medium or to karst-aquifer end members. 相似文献
2.
Mauro Giudici Stefano Margiotta Fiorella Mazzone Sergio Negri Chiara Vassena 《Environmental Earth Sciences》2012,67(7):1891-1907
The control exerted by the hydrostratigraphic structure on aquifer recharge, groundwater flow and discharge along the coastal areas of a Mediterranean basin (Salento peninsula, about 5,000?km2 wide, southern Italy) is assessed through the development and application of a groundwater flow model based on the reconstruction of the hydrostratigraphic architecture at the regional scale. The hydrostratigraphic model, obtained by processing surface and subsurface data, is applied to map the top of the main aquifer, which is hosted in the deep hydrostratigraphic unit corresponding to Cretaceous and Oligocene limestones with complex geometrical relationships with the sea. It is also used to estimate the aquifer recharge, which occurs by percolation through overlying younger sediments with low permeability. These data are completed with information about the soil use to estimate water abstraction for irrigation and with literature data to estimate the water abstraction for drinking and industrial purposes. The above-sketched conceptual model is the basis for a finite difference groundwater 2D pseudo-stationary flow model, which assumes the following fundamental approximations: the fractured and karst limestone hydrostratigraphic unit can be approximated, at the model scale, as a continuous medium for which the discrete Darcy??s law is valid; the transition zone between salt and fresh water is so small with respect to the grid spacing that the Ghyben?CHerzberg??s approximation for a sharp interface can be applied. Along the coastline different boundary conditions are assigned if the top of the limestone hydrostratigraphic unit lies either above the sea level (the aquifer has a free surface and fresh water is drained), or below the sea level (the aquifer is under pressure and the contact with sea occurs off-shore). The groundwater flow model correctly predicts the areas where the aquifer is fully saturated with salt water. 相似文献
3.
Abigail L. Langston Elizabeth J. Screaton Jonathan B. Martin Vincent Bailly-Comte 《Hydrogeology Journal》2012,20(4):767-781
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit. 相似文献
4.
Impacts of agricultural irrigation recharge on groundwater quality in a basalt aquifer system (Washington, USA): a multi-tracer approach 总被引:1,自引:0,他引:1
Kyle B. Brown Jennifer C. McIntosh Laura K. Rademacher Kathleen A. Lohse 《Hydrogeology Journal》2011,19(5):1039-1051
Irrigation in semi-arid agricultural regions can have profound effects on recharge rates and the quality of shallow groundwater. This study coupled stable isotopes (2??, 18O), age-tracers (3H, CFCs, 14C), 87Sr/86Sr ratios, and elemental chemistry to determine the sources, residence times, and flowpaths of groundwater and agricultural contaminants (e.g. NO 3 ?C ) in the Saddle Mountains Basalt Aquifer in central Washington, USA, where over 80% of the population depend on groundwater for domestic use. Results demonstrate the presence of two distinct types of water: contaminated irrigation water and pristine regional groundwater. Contaminated irrigation water has high NO 3 ?C concentrations (11?C116? mg/l), 87Sr/86Sr ratios (0.70659?C0.71078) within range of nitrogen-based fertilizers, detectable tritium (2.8?C13.4 TU), CFC ages 20?C40?years, high ??18O values (?16.9 to ?13.5??), and ??100 percent modern 14C. Pristine regional groundwater has low NO 3 ?C concentrations (1?C5? mg/l), no detectable tritium (??0.8 TU), low ??18O values (?18.9 to ?17.3??) and 14C ages from ??15 to 33?ky BP. Nitrogen and oxygen isotopes of NO 3 ?C , combined with high dissolved oxygen values, show that denitrification is not an important process in the organic-poor basalt aquifers resulting in transport of high NO 3 ?C irrigation water to depths greater than 40?m in less than 30? years. 相似文献
5.
Continuous records of discharge, specific conductance, and temperature were collected through a series of storm pulses on two limestone springs at Fort Campbell, western Kentucky/Tennessee, USA. Water samples, collected at short time intervals across the same storm pulses, were analyzed for calcium, magnesium, bicarbonate, total organic carbon, and pH. Chemographs of calcium, calcite saturation index, and carbon dioxide partial pressure were superimposed on the storm hydrographs. Calcium concentration and specific conductance track together and dip to a minimum either coincident with the peak of the hydrograph or lag slightly behind it. The CO2 pressure continues to rise on the recession limb of the hydrograph and, as a result, the saturation index decreases on the recession limb of the hydrograph. These results are interpreted as being due to dispersed infiltration through CO2-rich soils lagging the arrival of quickflow from sinkhole recharge in the transport of storm flow to the springs. Karst spring hydrographs reflect not only the changing mix of base flow and storm flow but also a shift in source of recharge water over the course of the storm.
Resumen Se ha registrado en continuo la descarga, conductancia específica y temperatura de una serie de episodios de tormenta en dos manantiales en calizas ubicados en Fort Campbell, en el oeste de Kentucky/Tennessee (Estados Unidos de América). Se ha analizado muestras de agua recogidas en breves intervalos de tiempo durante los episodios de tormenta, determinando el calcio, magnesio, bicarbonato, carbono orgánico total y pH. Se ha superpuesto quimiogramas de calcio, índice de saturación en calcita y presión parcial de dióxido de carbono en los hidrogramas de las tormentas. La concentración de calcio y la conductancia específica se comportan de forma similar y presentan un mínimo que coincide también con un pico del hidrograma o que se retrasa ligeramente con respecto a él. La presión de dióxido de carbono sigue aumentando en la rama de recesión del hidrograma y, como consecuencia, disminuye el índice de saturación de la rama de recesión del hidrograma. Se interpreta que estos resultados son debidos a la infiltración dispersa a través de suelos enriquecidos en dióxido de carbono que retrasan el flujo rápido desde la recarga en los sumideros hasta su afloramiento en los manantiales. Los hidrogramas en manantiales kársticos reflejan no sólo la mezcla cambiante del flujo de base y el de tormenta, sino también el cambio en el origen del agua de recarga durante el curso de la tormenta.
Résumé Lenregistrement en continu du débit, de la conductivité et de la température de leau a été réalisé au cours dune série de crues à deux sources émergeant de calcaires, à Fort Campbell (Kentucky occidental, Tennessee, États-Unis). Des échantillons deau, prélevés à de courts pas de temps lors de ces crues, ont été analysés pour le calcium, le magnésium, les bicarbonates, le carbone organique total et le pH. Les chimiogrammes de calcium, dindice de saturation de la calcite et de la pression partielle en CO2 ont été superposés aux hydrogrammes de crue. La concentration en calcium et la conductivité de leau se suivent bien et passent par un minimum correspondant au pic de lhydrogramme ou légèrement retardé. La pression partielle en CO2 continue de croître au cours de la récession de lhydrogramme de même que lindice de saturation de la calcite décroît. Ces résultats sont interprétés comme étant dus à linfiltration dispersée au travers de sols riches en CO2, décalée par rapport à larrivée de lécoulement rapide provenant de la recharge, à partir dune perte, de lécoulement de crue vers les sources. Les hydrogrammes de sources karstiques ne reflètent pas seulement le mélange variable de lécoulement de base et de lécoulement de crue, mais également un changement dorigine de leau de la recharge au cours de lépisode de crue.相似文献
6.
Reza Ghasemizadeh Xue Yu Christoph Butscher Ingrid Y. Padilla Akram Alshawabkeh 《Hydrogeology Journal》2016,24(6):1463-1478
In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal. 相似文献
7.
Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain) 总被引:2,自引:0,他引:2
W. Martín-Rosales J. Gisbert A. Pulido-Bosch A. Vallejos A. Fernández-Cortés 《Environmental Geology》2007,52(5):985-995
The scarcity of water resources in semiarid regions is usually accompanied by brief periods of quite intense precipitation
that can generate potentially catastrophic floods. In such regions, the use of runoff water for aquifer recharge can contribute
to both flooding prevention and effective management of water resources. This paper presents the results of a study undertaken
in southeastern Spain focusing on the recharge induced by a number of engineering structures (check dams) and gravel pits.
The current network of check dams consists of 107 dams, of which 64 are located over permeable substrates and so we can induce
recharge of the storm runoff retained therein. The hydrological model was performed using the curve number method (CN) of
the Service for the Conservation of Soils, utilizing code HEC-HMS. Results indicate that the proportion of runoff infiltrated
through the check dams varies from 3% to more than 50%, according to the effective volume of water dammed and the substrate.
In addition, hydrological modelling was carried out in a subbasin taking advantage of the presence of one of a number of gravel
pits. The gravel pits are situated in the apical sectors of alluvial fans that overlie hydrogeological units that are widely
overexploited, and so they are well positioned for use for artificial recharge. In this case, we conclude that a pit is capable
of retaining and infiltrating the combined runoff volumes for various return periods (5, 25, 50, and 100 years). Furthermore,
the simulation carried out suggests that the recharge processes in these environments are intimately linked to episodic storm
events. The incorporation of hydrogeological criteria in the design and construction of check dams could therefore be very
useful for the optimum management of water resources in semiarid zones. 相似文献
8.
Jennifer L. Druhan James F. Hogan Christopher J. Eastoe Barry J. Hibbs William R. Hutchison 《Hydrogeology Journal》2008,16(2):281-296
Identification of hydrogeologic controls on groundwater flowpaths, recharge, and salinization is often critical to the management of limited arid groundwater resources. One approach to identifying these mechanisms is a combined analysis of hydrogeologic and hydrochemical data to develop a comprehensive conceptual model of a groundwater basin. To demonstrate this technique, water samples were collected from 33 discrete vertical zone test holes in the Hueco Bolson aquifer, located within the Trans-Pecos Texas region and the primary water resource for El Paso, Texas, USA and Juárez, Mexico. These samples were analyzed for a suite of geochemical tracers and the data evaluated in light of basin hydrogeology. On the basis of δ2H and δ18O data, two regional recharge sources were recognized, one originating from western mountain-fronts and one from through-flow of the adjacent Tularosa aquifer. Chloride concentrations were strongly correlated with lithologic formations and both Cl/Br and 36Cl ratios suggested the primary chloride source is halite dissolution within a specific lithologic unit. In contrast, sulfur isotopes indicated that most sulfate originates from Tularosa basin Permian gypsum sources. These results yielded a more comprehensive conceptual model of the basin, which suggested that chloride salinization of wells is the result of upconing of waters from the Fort Hancock formation. 相似文献
9.
M. A. Díaz-Puga A. Vallejos F. Sola L. Daniele L. Molina A. Pulido-Bosch 《International Journal of Environmental Science and Technology》2016,13(11):2579-2596
In order to identify the origin of the main processes that affect the composition of groundwater in a karstic aquifer, a hydrogeochemical and isotopic study was carried out of water from numerous observation wells located in Sierra de Gador, a semiarid region in SE Spain. Several natural and anthropogenic tracers were used to calculate groundwater residence time within this complex aquifer system. Analysis of major ions enabled the principal geochemical processes occurring in the aquifer to be established, and the samples were classified into four distinctive solute groups according to this criterion. Dissolution of carbonate rocks determines the chemical composition of less mineralized water. In another group, the concurrent dissolution of dolomite and precipitation of calcite in gypsum-bearing carbonate aquifer, where the dissolution of relatively soluble gypsum controls the reaction, are the dominant processes. Marine intrusion results in highly mineralized waters and leads to base exchange reactions. The groundwater enrichment of minor and trace elements allowed classification of the samples into two classes that are linked to different flow patterns. One of these classes is influenced by a slow and/or deep regional flow, where the temperature is generally elevated. The influence of sulphate reduces by up to 40 % the barium concentration due to the barite precipitation. Isotope data (T, 14C) confirm the existence of recent local flows, and regional flow system, and ages of ground water may reach 8000 years. The importance of gypsum dissolution in this aquifer is proved by the δ34S content. 相似文献
10.
Karst aquifer studies often focus on allogenic water inputs and large conduit flow. However, diffuse recharge can be significant, particularly in unconfined eogenetic karst aquifers that retain high matrix permeability. This study examines an unconfined region of the upper Floridan aquifer (USA) that hosts a sinking stream, its resurgence, and a large conduit system. Daily diffuse recharge was approximated using a water-budget method and ranged from 17% of precipitation during a low precipitation year to >53% during the highest precipitation year, illustrating the highly variable nature of diffuse recharge in this region. The total allogenic input via the sinking stream over the 5 years of the study was significantly larger than the volume of diffuse recharge. However, only about 2% of the allogenic recharge flows from the conduit into the surrounding aquifer. That flow is restricted to storm events when hydraulic heads in the conduits exceed those in the surrounding aquifer. The estimated volume of dissolution is similar for allogenic recharge and diffuse recharge to the unconfined region surrounding the conduits, but dissolution from the diffuse recharge is distributed over a larger area than dissolution from allogenic recharge. These results exemplify how recharge type impacts flow and water–rock interactions in eogenetic karst aquifers. 相似文献
11.
12.
13.
14.
Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece 总被引:7,自引:1,他引:7
Georgios Panagopoulos 《Environmental Earth Sciences》2012,67(7):1877-1889
Karst aquifers can have a complex flow as a result of the formation of large conduits from dissolution features. As a result, a three-dimensional finite-difference groundwater flow model (equivalent porous media) may not apply as the dual porosity nature of karst features and the effects of turbulent flow cannot be directly simulated. Statistical analysis of karst hydrographs of the Trifilia aquifer in Greece showed the existence of a slightly karstified mass with high primary porosity that regulates the flow. An equivalent porous media model was developed to simulate the Trifilia karst aquifer using MODFLOW. Steady state and transient state calibration gave encouraging results for the equivalent porous media approach, which does not consider pipe flow or turbulence. Detailed hydrogeological research conducted in the area helped define the aquifer hydraulic conductivity zones and extent; and flux to/from the aquifer. Only hydraulic conductivity and specific yield were adjusted during calibration, as the flux to/from the system was considered known and applied as boundary conditions. Small mean absolute and RMS piezometric head error of the model under both steady and transient state conditions were achieved. 相似文献
15.
Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality. 相似文献
16.
Stable isotopes (??2H, ??18O and ??13C) and radiocarbon (14C) have been used in conjunction with chemical data to evaluate recharge mechanisms and groundwater residence time, and to identify inter-aquifer mixing in the Djeffara multi-aquifer in semi-arid southeastern Tunisia. The southern part of this basin, the Djeffara of Medenine aquifer system, is comprised of two main aquifers of Triassic and Miocene sandstone. The Triassic aquifer presents two compartments; the first one (west of the Medenine fault system) is unconfined with a well-defined isotope fingerprint; the second compartment is deeper and confined. Multi-tracer results show groundwater of different origins, ages and salinities, and that tectonic features control groundwater flows. Fresh and brackish groundwater from the unconfined part of the Triassic aquifer was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 14C ages, are variable and could reach 3.5?mm/year. Brackish water of the deep confined part of the Triassic aquifer has stable isotope composition and 14C content that indicates earlier recharge during late Pleistocene cold periods. Brackish to saline water of the Miocene aquifer presents variable isotope composition. Groundwater flowing through the Medenine fault system is mainly feeding the Miocene aquifer rather than the deep confined part of the Triassic aquifer. 相似文献
17.
The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age. 相似文献
18.
Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK. 相似文献
19.