首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proper management of groundwater resources requires an accurate evaluation of the parameters (hydraulic properties) that control the movement and storage of groundwater. Hydrogeological parameters are the basis of groundwater evaluation, modeling, and management and so on. A global curve-fitting method incorporating pumping test data and water table recovery data was introduced in the present study. The principal and procedures of the method were elucidated in detail. The drawdown and recovery data from two sets of transient flow pumping test conducted in no. 2 water source site of Shizuishan city were used to verify the calculation accuracy of the proposed method. The hydrogeological parameters were also estimated with traditional type curve-fitting method on the basis of formula derived by Hantush and Jacob. The hydrogeological parameters calculated by the two methods were compared and the results show that the parameters obtained by the global curve-fitting method are a little bigger than but very close to those obtained by the traditional type curve-fitting method. The proposed method which possesses three major advantages is feasible and reliable in aquifer parameter identification. A comparative study on various methods for parameter identification is required and expected in future study.  相似文献   

2.
Seawater intrusion is one of the most serious environmental problems in many coastal regions all over the world. Mixing a small quantity of seawater with groundwater makes it unsuitable for use and can result in abandonment of aquifers. Therefore, seawater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents development and application of a simulation‐optimization model to control seawater intrusion in coastal aquifers using different management scenarios; abstraction of brackish water, recharge of freshwater, and combination of abstraction and recharge. The model is based on the integration of a genetic algorithm optimisation technique and a coupled transient density‐dependent finite element model. The objectives of the management scenarios include determination of the optimal depth, location and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. The developed model is applied to analyze the control of seawater intrusion in a hypothetical confined coastal aquifer. The efficiencies of the three management scenarios are examined and compared. The results show that combination of abstraction and recharge wells is significantly better than using abstraction wells or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. The results from this study would be useful in designing the system of abstraction/recharge wells to control seawater intrusion in coastal aquifers and can be applied in areas where there is a risk of seawater intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrogeology Journal - Significant urbanization and industrialization, combined with strong population growth, have been witnessed in the Arabian Peninsula (Oman, United Arab Emirates, Saudi...  相似文献   

4.
Pollution of groundwater by seawater intrusion poses a threat to sustainable agriculture in the coastal areas of Korea. Therefore, seawater intrusion monitoring stations were installed in eastern, western, and southern coastal areas and have been operated since 1998. In this study, groundwater chemistry data obtained from the seawater intrusion monitoring stations during the period from 2007 to 2009 were analyzed and evaluated. Groundwater was classified into fresh (<1,500 μS/cm), brackish (1,500–3,000 μS/cm), and saline (>3,000 μS/cm) according to EC levels. Among groundwater samples (n = 233), 56, 7, and 37% were classified as the fresh, brackish, and saline, respectively. The major dissolved components of the brackish and saline groundwaters were enriched compared with those of the fresh groundwater. The enrichment of Na+ and Cl was especially noticeable due to seawater intrusion. Thus, the brackish and saline groundwaters were classified as Ca–Cl and Na–Cl types, while the fresh groundwater was classified as Na–HCO3 and Ca–HCO3 types. The groundwater included in the Na–Cl types indicated the effects of seawater mixing. Ca2+, Mg2+, Na+, K+, SO4 2−, and Br showed good correlations with Cl of over r = 0.624. Of these components, the strong correlations of Mg2+, SO4 2−, and Br with Cl (r ≥ 0.823) indicated a distinct mixing between fresh groundwater and seawater. The Ca/Cl and HCO3/Cl ratios of the groundwaters gradually decreased and approached those of seawater. The Mg/Cl, Na/Cl, K/Cl, SO4/Cl, and Br/Cl ratios of the groundwaters gradually decreased, and were similar to or lower than those of seawater, indicating that Mg2+, Na+, K+, SO4 2−, and Br, as well as Cl in the saline groundwater can be enriched by seawater mixing, while Ca2+ and HCO3 are mainly released by weathering processes. The influence of seawater intrusion was evaluated using threshold values of Cl and Br, which were estimated as 80.5 and 0.54 mg/L, respectively. According to these criteria, 41–50% of the groundwaters were affected by seawater mixing.  相似文献   

5.
Seawater intrusion is a major threat to the rapidly depleting groundwater resources in the coastal areas of India. Groundwater-based irrigation, significant industrial development and rapid urbanization are some of the key contributors exacerbating the stress on groundwater resources. Vulnerability to seawater intrusion in the Ramanathapuram district of Eastern India is assessed here utilizing the GALDIT method, for a period of 10 years (2001–2010). Results revealed a drastic increase in percent area coverage under moderate vulnerability, from 19.5 to 53.88 %, between the years 2001 and 2010. On the contrary, areas classified as highly vulnerable underwent minor changes over the span of the study. Vulnerability of the study area was also analyzed for the year 2050 considering an average global mean sea level rise of 3.1 mm/year. Results from the analysis for the year 2050 showed that, almost, the entire study area (~97 %) was classified under moderate vulnerability. As a remedial measure to this imminent threat, favorable zones for artificial recharge were delineated on the basis of overlay analysis with weightage values for important controlling factors. Subsequently, the quantity of artificial recharge required to inhibit the intrusion of seawater, at specified favorable zones were estimated to be 674.87, 599.18 and 1,450.66 m3/year.  相似文献   

6.
In many coastal areas, overexploitation of groundwater resources has led both to the quantitative degradation of local aquifers and the deterioration of groundwater quality due to seawater intrusion. To investigate the behavior of coastal aquifers under these conditions, numerical modeling is usually implemented; however, the proper implementation of numerical models requires a large amount of data, which are often not available due to the time-consuming and costly process of obtaining them. In the present study, the investigation of the behavior of coastal aquifers under the lack of adequate data is attempted by developing a methodological framework consisting of a series of numerical simulations: a steady-state, a false-transient and a transient simulation. The sequence and the connection between these simulations constitute the backbone of the whole procedure aimed at adjusting the various model parameters, as well as obtaining the initial conditions for the transient simulation. The validity of the proposed methodology is tested through evaluation of the model calibration procedure and the estimation of the simulation errors (mean error, mean absolute error, root mean square error, mean relative error) using the case of Nea Moudania basin, northern Greece. Furthermore, a sensitivity analysis is performed in order to minimize the error estimates and thus to maximize the reliability of the models. The results of the whole procedure affirm the proper implementation of the developed methodology under specific conditions and assumptions due to the lack of sufficient data, while they give a clear picture of the aquifer’s quantitative and qualitative status.  相似文献   

7.
Coastal aquifers are usually exposed to saltwater intrusion. Therefore, groundwater extracted from these aquifers should be regulated considering their dimensions and effective parameters. In this paper, optimum discharge from a large number of exploitation wells is evaluated according to variations of width, length, and anisotropy coefficient in the Qom aquifer near the salt lake in central Iran. First, the wells are divided into clusters to decrease the number of decision variables. Then, the location and discharge from each cluster is obtained using SEAWAT and charged system search (CSS) simulation–optimization model with the assumption of three-dimensional variable density flow. The maximum discharge considering various anisotropy rates is computed based on different values of lengths and widths of the aquifer. Finally, an M5-tree model is trained using the obtained samples to derive a linear relationship between input and output data. Based on the results, for various ranges of width and length of an aquifer with impermeable boundaries, different linear equations for optimum discharge are obtained. Also, it was found that for an aquifer with a small width, the critical discharge is a function of the length while the effect of the boundaries is negligible. Sensitivity analysis of the anisotropy coefficient reveals that with increasing the anisotropy rate, thickness and slope of the transition zone decrease and as the maximum discharge increases consequently. However, the sensitivity of the discharge to anisotropy rate is not remarkable. A comparison between the results of this study with those of the analytical method based on sharp interface assumption is carried out. For the critical condition, the best agreement between analytical equation (\(\overline {L} =0.87\overline {W} +0.62\)) and proposed method (\(\overline {L} =0.83\overline {W} - 1.41\)) is achieved for the anisotropic aquifer when the 50% isochlor is assumed as the measure of salt water intrusion.  相似文献   

8.
A new accurate numerical solution is presented for aquifer storage and recovery (ASR) systems in coastal aquifers; flow is approximated as radial Dupuit interface flow. The radial velocities of points on the interface are a function of time, the vertical coordinate, and the dimensionless parameter D (the discharge of the well divided by the product of the hydraulic conductivity, the square of the aquifer thickness, and the dimensionless density difference). The recovery efficiency of an ASR system (the ratio of the recovered volume of water divided by the injected volume of water) is determined by D and by the relative lengths of the injection, storage and recovery periods. Graphs are produced for the recovery efficiency as a function of parameter D for ASR operations with and without storage periods and for multiple cycles. The presented solutions and graphs are to be used as screening tools to assess the feasibility of specific injection, storage and recovery scenarios of planned ASR systems in saltwater aquifers without having to run complicated flow and transport models. When the screening tool indicates that recovery efficiencies are acceptable, the consideration of other features such as mixing and chemistry is warranted.  相似文献   

9.
将改进后的遗传算法GA(添加了小生境、Pareto解集过滤器等模块)与变密度地下水流及溶质运移模拟程序SEAWAT-2000相耦合,新开发了变密度地下水多目标模拟优化程序MOSWTGA。将MOSWTGA应用于求解大连周水子地区以控制抽水井所在含水层不发生海水入侵为约束的地下水开采多目标优化管理模型,得到地下水最大开采量与海水入侵面积之间一系列Pareto近似最优解。研究成果不仅为实行合理的地下水资源配置提供了科学的实用模型,同时也为解决多个优化目标下的变密度地下水优化管理问题提供高效可靠的模拟优化工具,具有重要的潜在环境经济效益。  相似文献   

10.
To investigate the relative importance of projected sea-level rise, climate change effects on recharge, and groundwater extraction on seawater intrusion in important coastal aquifers in Atlantic Canada, a three-dimensional numerical model of density-dependent groundwater flow coupled with solute transport was developed for the Richibucto region of New Brunswick. The model was used, with an efficient 2k factorial design approach, to perform simulations for the period 2011–2100. The results of the factorial analyses indicate that the relative importance of the three factors investigated varies depending on the model location considered. The effect of declining recharge is most significant at shallow to intermediate depths along the freshwater–seawater transition zone, while the effect of increasing pumping rates dominates at a location relatively close to the well field. The effect of sea-level rise is shown to be significant only at the much deeper inland toe of the transition zone. The spatial variation in importance is related to how different model boundary conditions influence freshwater flow at the different locations within the model domain. This investigation indicates that sea-level rise has the least significant effect (of the three factors considered) on future seawater intrusion in sandstone aquifers in the Richibucto region.  相似文献   

11.
Zhao  Jie  Lin  Jin  Wu  Jianfeng  Wu  Jichun 《Hydrogeology Journal》2021,29(7):2329-2346

Combined simulation-optimization modeling is an essential tool for coastal groundwater management. However, determining the appropriate simulation-optimization approach for specific seawater intrusion problems remains a significant challenge, especially for the real-world conditions associated with management of complex groundwater systems, competing management objectives, and global concerns of future climate change. In this study, a linked multi-objective simulation-optimization framework, the MOSWTGA (multi-objective optimal code, coupling SEAWAT and an improved genetic algorithm), was applied to a coastal groundwater system in Zhoushuizi district of Dalian City in northern China. The system has fractured karst aquifers and is modelled for the next 20 years (from 2010) under the moderate greenhouse gas concentration scenario RCP4.5 (representative concentration pathways) in the CNRM (Centre National de Recherches Météorologiques) and MIROC (Model for Interdisciplinary Research on Climate) climate modes derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The MOSWTGA was developed by integrating the density-dependent groundwater flow and solute transport code SEAWAT with a genetic algorithm improved by adding the Pareto-dominated ranking module, Pareto solution set filter, and fitness sharing procedure. A set of near Pareto-optimal solutions of the trade-off between the maximum of the total pumping rate and the minimum of the extent of seawater intrusion was obtained. The study tried to provide a theoretical basis for real-world groundwater management under the given conditions.

  相似文献   

12.
13.
郇恒飞  郭常来  崔健  倪金  石旭飞  马宏伟 《地质通报》2021,40(10):1720-1728
锦州大、小凌河区域内的海水、咸水入侵严重影响了当地的经济和人民生活质量,为查明研究区海水、咸水入侵的界线变化及污染范围,在研究区完成了5条音频大地电磁测深(AMT)剖面。剖面数据采用改进非线性共轭梯度(NLCG)法反演,二维反演结果直观反映了研究区咸淡水分布范围,给出了咸淡水的分界线位置。结果表明,L0和L1剖面处的海侵范围未扩大;L2剖面处海侵范围在扩大;L3剖面处地下古咸水已污染部分淡水;L4剖面处存在古咸水但未污染淡水;这与水文地质钻孔及机民井调查资料基本吻合。总之,在锦州地区使用AMT方法研究海水、咸水的赋存状态及变化规律可行、有效,可以为锦州环境水文地质调查提供基础的地球物理资料。  相似文献   

14.
Seawater intrusion (SWI) is a complex process, where 3D modeling is often necessary in order to monitor and manage the affected aquifers. Here, we present a synthetic study to test a joint hydrogeophysical inversion approach aimed at solving the inverse problem of estimating initial and current saltwater distribution. First, we use a 3D groundwater model for variable density flow based on discretized flow and solute mass balance equations. In addition to the groundwater model, a 3D geophysical model was developed for direct current resistivity imaging and inversion. The objective function of the coupled problem consists of data misfit and regularization terms as well as a coupling term that relates groundwater and geophysical states. We present a novel approach to solve the inverse problem using an alternating direction method of multipliers (ADMM) to minimize this coupled objective function. ADMM enables to treat the groundwater and geophysical part separately and thus use the existing software with minor changes. To further reduce the computational cost, the sensitivities are derived analytically for the discretized system of equations, which allows us to efficiently compute the gradients in the minimization procedure. The method was tested on different synthetic scenarios with groundwater and geophysical data represented by solute mass fraction data and direct current resistivity data. With the ADMM approach, we were able to obtain better estimates for the solute distribution compared to just considering each data separately, solving the problem with a simple coupled approach or by a direct substitution of the coupling constraint.  相似文献   

15.

Numerical modelling is increasingly used as a tool for improving management strategies in aquifers and to support the design of comprehensive projects considering natural and anthropogenic processes. Overall, numerical simulation in karstic aquifers poses a major scientific challenge due to the non-Darcian groundwater flow dynamics. In specific cases, the equivalent porous medium approach has shown acceptable results, particularly in poorly karstified aquifers with regional/subregional scales such as this case. The Yucatan coastal karstic aquifer (Mexico) has been defined as a complex regional heterogeneous system, partially confined, thus allowing the discussion of multiple conceptual models. In this research, a two-dimensional numerical model of flow and transport was implemented using SEAWAT for the NW Yucatan aquifer. Four likely conceptual models were audited, calibrated and verified using hydrogeological field data, to select the best one, considering their fit and complexity. The numerical model accuracy was evaluated using the root-mean-square error, Nash Sutcliffe efficiency and the Pearson coefficient. The Akaike information criterion and Bayesian information criterion were included for evaluating the complexity of the numerical models. In addition, the signal of tide propagation into the aquifer was assessed as a proxy to improve the numerical calibration process. Results show that the most complex numerical model has a better calibration than the simpler models, but the model accuracy is worse when compared to less complex numerical models in the verification exercise. This research offers enhancement in the knowledge of numerical modelling in heterogeneous coastal aquifers within a conceptual-model uncertainty setting.

  相似文献   

16.
The inverse problem of seawater intrusion (SWI) is reviewed. It represents a challenge because of both conceptual and computational difficulties and because coastal aquifer models display many singularities: (1) head measurements need to be complemented with density information; (2) salinity concentration data are very sensitive to flow within the borehole. Data problems can be reduced by incorporating the measurement process within model calibration; (3) SWI models are extremely sensitive to aquifer bottom topography; (4) the initial conditions may be far from steady state and depend on the location and type of sea-aquifer connection. Problems with aquifer geometry and initial conditions can be addressed by parameterization, which allows for modification during inversion. The four sets of difficulties can be partly overcome by using tidal response and electrical conductivity data, which are highly informative and provide extensive coverage. Still, SWI inversion is extremely demanding from a computation point of view. Computational improvements are discussed.  相似文献   

17.
An electrical resistivity method has been used to determine aquifer parameters in the Ganga-Yamuna interfluve in northern India. An existing relationship between the geoelectrical and hydraulic parameters has been modified for the case of an anisotropic aquifer. The hydrogeological framework in the upper part of the Ganga-Yamuna interfluve is evaluated by using existing relationships between hydraulic parameters and geoelectrical parameters for alluvial aquifers. On the basis of aquifer geometry, the area has been divided into two hydraulic units: the western Yamuna flood plain and the Ganga flood plain towards the east. The resistivity data collected in parts of the study area are first interpreted in terms of true resistivity and thicknesses of subsurface layers. The electrical parameters (resistivity and thicknesses) are subsequently correlated with the available pumping test data. Distinct correlations between transmissivity and modified transverse resistance are obtained for the two hydraulic units. A four-parameter model consisting of hydraulic conductivity, modified longitudinal resistivity, modified transverse resistance and hydraulic anisotropy is presented for the anisotropic aquifer underlain by conductive fine grained sediments. The model has been validated at a number of locations, where aquifer parameters are known from pumping test data.  相似文献   

18.
19.
20.
This paper refers to the development of a conceptual model for the management of a coastal aquifer in northern Greece. The research presents the interpretation and analysis of the quantitative (groundwater level recordings and design of piezometric maps) regime and the formation of the upcone within the area of investigation. Additionally it provides the elaboration of the results of chemical analyses of groundwater samples (physicochemical parameters, major chemical constituents and heavy metals and trace elements) of the area which were taken in three successive irrigation periods (July–August 2003, July–August 2004 and July 2005), in order to identify areas of aquifer vulnerability. The study identifies the areas where ion exchange phenomena occur, as well as the parts of the aquifer where the qualitative degradation of the aquifer system is enhanced. The paper, finally, assesses the lack of any scientific groundwater resources management of the area by the local water authorities, as well as the current practices of the existing pumping conditions scheme as applied by groundwater users.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号