首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
古辰  姜美彤  蒋忠冠 《湖泊科学》2020,32(1):124-133
于2018年68月在长江下游菜子湖流域沿岸带、敞水区、湖口和河道4种典型微生境分别设置样点进行鱼类调查,探讨生境过滤对鱼类物种和功能组成的影响.共采集鱼类5目31属43种,其中沿岸带湖泊定居性、山溪河流性及江湖洄游性鱼类物种数均较低,河道山溪河流性鱼类物种数较高.通过对各微生境间物种组成的差异分析,显示出4种微生境条件下的鱼类群落均有显著差异,且沿岸带、敞水区和河道的代表种分别为、鳙、草鱼、鲢,华鳈、光唇蛇鮈、蛇鮈.通过单因素多元方差分析解析不同生境过滤条件下鱼类物种和功能多样性的差异,发现在物种多样性层面,沿岸带的Richness指数和Shannon-Wiener指数显著低于其他微生境;在功能多样性层面,不仅发现沿岸带显著较低的RaoQ指数,同时发现河道的FDiv指数显著高于其他微生境类型.  相似文献   

2.
基于2017—2022年在雅砻江甘孜以下干流及部分支流的鱼类监测数据,采用多样性指数和多元统计方法分析了该流域的鱼类群落结构。通过在雅砻江干流和6条支流21个采样点的监测及相关文献调研共获得鱼类98种,包括9种国家二级重点保护鱼类和28种长江上游特有鱼类。除干流下游Margalef丰富度指数外,其他区域多样性指数值相差不大;干流上、中、下游和6条支流间鱼类生物多样性不存在显著差异。Cluster分析和NMDS分析表明鱼类群落可以分成6组,ANOSIM检验表明6组间存在显著性差异,6组在海拔和河流等级上存在极显著和显著性差异。分别计算6个聚类组的优势种和常见种,并从栖息类型、食性和产卵类型上进行分析,结果显示6组在栖息类型和产卵类型上差异显著。二滩库区和鳡鱼河静缓流河段优势种为翘嘴鲌(Culter alburnus)、尼罗罗非鱼(Oreochromis niloticus)等,建议加强对下游流域外来物种的监测,避免发生大规模生物入侵现象。自1980s以来,雅砻江下游流域鱼类种类组成发生了明显变化,推测与梯级电站修建运行等造成生境改变有关。  相似文献   

3.
4.
唐文家  何德奎 《湖泊科学》2013,25(4):600-608
2005-2010年对黄河上游茨哈峡至积石峡河段进行鱼类资源调查.结果表明,该河段分布有鱼类39种,分别隶属6目9科29属.鲤形目为主要类群,共2科8亚科20属27种,鲤科16属16种,鳅科4属11种;鲑形目2科3亚科4属5种;鲈形目2科2属4种;鲇形目、鳉形目、合鳃鱼目各1科1属1种.采集到鱼类36种,新增补鱼类7种(其中土著鱼类1种,外来鱼类6种).Margalef丰富度指数为0.692~1.753,香农威纳生物多样性指数为0.796~1.734,Shannon-Wiener改进指数为2.699~9.349,Wilhm改进指数为0.733~1.839,辛普森指数为0.406~0.764,Pielou指数为0.495~0.850.这表明该河段鱼类多样性不高,各样点间差异不显著,但不同水域渔获物组成存在一定的差异.本文对重要土著鱼类和外来鱼类的生态习性进行调查,并对鱼类资源衰退进行分析,提出了保护建议.  相似文献   

5.
浅型富营养湖泊的生态恢复——五里湖水生植被重建实验   总被引:26,自引:4,他引:26  
李文朝 《湖泊科学》1996,8(Z1):1-10
依据浅型湖泊生态系统的多稳定态理论,在富营养湖泊治理过程中,当外来污染得到有效控制时,通过人工重建水生植被可以加速湖泊的生态恢复。在五里湖中,挺水植物和浮叶植物都能很好地生长,水底光照不足是沉水植物难以生长的主要原因。在自然条件下建成了永久性挺水植物群落和浮叶植物群落,在人工控制的围隔环境中改善了水底光照条件,建成了沉水植物群落。但这些沉水植物仍不能渡过夏季,主要原因是湖水过深和水温较高,降低水位和建造人工浅滩可为五里湖沉水植被恢复创造有利条件。本研究可为富营养水体的水质控制和植被恢复提供多种实用技术,但在水生植被的结构与环境功能等方面仍需开展深入的定量研究。  相似文献   

6.
The diets of monkey goby, Neogobius fluviatilis, and racer goby, Babka gymnotrachelus, which are the most abundant gobiids in the Dniprodzerzhynsk Reservoir (Dnieper River, Ukraine), have been studied on a diel basis across three summer months at one sampling site of the reservoir littoral zone. In total, 37 prey items were identified in the monkey goby diet and 39 prey items were identified in the racer goby diet during the sampling period. The most important prey were chironomid larvae and pupae, copepods, cladocerans, mysids, and juvenile fish and their importance varied depending on goby size, diel period, and month. Both gobiids showed clear patterns in their diel feeding activities. Both species fed over a 24-h period, but the monkey goby fed more actively during the daytime, while the racer goby fed more at night. Peak chironomid larvae consumption by the monkey goby were from 10:00 to 14:00 and from 22:00 to 02:00,, while those by the racer goby were in the night-time from 18:00 to 6:00. The consumption of chironomid pupae peaked at dusk and night for both gobiids. Total diet overlap index between the two gobiids, during all months and diel periods combined was 78.6 and it varied between different length groups. The lowest diet overlap indices were observed between the smallest and largest length groups of the two species, while the highest overlap indices were observed between the same length classes of different species and between the neighbouring length groups of the same species. A negative relationship was observed between the difference in the mean lengths of two gobiid species and the diet overlap index. The monkey goby and racer goby can reduce their competition and be successive due to several factors: (i) different spawning periods allowing them to utilise food resources available for their juveniles at different periods; (ii) different habitat preferences resulting in (iii) somewhat different prey choices; (iv) different feeding activity periods.  相似文献   

7.
本文作为“滇池沿岸带生态修复技术研究及工程示范”系列研究论文之一,主要研究了滇池东北部沿岸带环境恶化与生态退化现状、成因及妨碍自然生态恢复的主要限制因素.风浪强烈侵蚀、湖底坚硬贫瘠、水质严重污染、大型水生植物和底栖动物消失,滇池东北部沿岸带已经蜕变成了“水域荒漠”.湖滩湿地围垦、人工岸堤修建和水质污染是导致沿岸带环境恶化、生态退化的主要原因,强烈的风浪冲刷和严重的水质污染是阻碍沿岸带自然生态恢复的主要限制因素.生态恢复必须从基础环境改造入手,实施生态修复.  相似文献   

8.
Using data from 31 ponds, we investigated the importance of environmental (e.g. habitat complexity, nutrient content, pH) and biotic factors (i.e. fish predation) on the spatial patterns of planktonic (phytoplankton and zooplankton) and benthic (macroinvertebrates) assemblages. We also evaluated the degree of concordance among assemblages and between the functional and taxonomic composition of assemblages, and test the hypothesis that surrogates of biodiversity (e.g. taxonomic or functional groups) can be used in pond conservation and biomonitoring studies. We found that the spatial patterns of benthic and pelagic assemblages were determined by macrophyte coverage, water quality and, to a lesser extent, fish. However, shifts in the taxonomic and functional composition were not congruent. Moreover, local environmental variation was slightly more important for the taxonomic than the functional composition of assemblages, except for phytoplankton. The degree of concordance among assemblages was also weak, which may be partly due to the fact that species respond individualistically to environmental variation. These findings also suggest that the coupling between benthic and pelagic habitats in flatland ponds is weak, and that the use of surrogate measures or indicator groups in pond conservation studies may not be appropriate.  相似文献   

9.
Knowledge of locomotion of fish near river confluences is important for prediction of fish distribution in a river network.The flow separation zone near the confluence of a river network is a favorite habitat and feeding place for silver carp,which is one of the four major species of Chinese carp and usually provides positive rheotaxis to water flow.In the current study,a series of laboratory experiments were done to determine the behavioral responses of juvenile silver carp to the hydrodynamic ...  相似文献   

10.
Thermal preference and performance provide the physiological frame within which fish species seek strategies to cope with the challenges raised by the low temperatures and low levels of oxygen and food that characterize winter. There are two common coping strategies: active utilization of winter conditions or simple toleration of winter conditions. The former is typical of winter specialist species with low preferred temperatures, and the latter is typical of species with higher preferred temperatures. Reproductive strategies are embodied in the phenology of spawning: the approach of winter conditions cues reproductive activity in many coldwater fish species, while the departure of winter conditions cues reproduction in many cool and warmwater fish species. This cuing system promotes temporal partitioning of the food resources available to young-of-year fish and thus supports high diversity in freshwater fish communities. If the zoogeographic distribution of a species covers a broad range of winter conditions, local populations may exhibit differences in their winter survival strategies that reflect adaptation to local conditions. Extreme winter specialists are found in shallow eutrophic lakes where long periods of ice cover cause winter oxygen levels to drop to levels that are lethal to many fish. The fish communities of these lakes are simple and composed of species that exhibit specialized adaptations for extended tolerance of very low temperatures and oxygen levels. Zoogeographic boundaries for some species may be positioned at points on the landscape where the severity of winter overwhelms the species’ repertoire of winter survival strategies. Freshwater fish communities are vulnerable to many of the shifts in environmental conditions expected with climate change. Temperate and northern communities are particularly vulnerable since the repertoires of physiological and behavioural strategies that characterize many of their members have been shaped by the adverse environmental conditions (e.g. cool short summers, long cold winters) that climate change is expected to mitigate. The responses of these strategies to the rapid relaxation of the adversities that shaped them will play a significant role in the overall responses of these fish populations and their communities to climate change.  相似文献   

11.
12.
太湖贡湖湾虾类种类组成与时空分布特征   总被引:3,自引:1,他引:2  
温周瑞  谢平  徐军 《湖泊科学》2011,23(6):961-966
分别于2005年4月、7月、10月利用蹦网对贡湖湾虾类种类组成和时空分布进行调查.共采集到虾类9605尾,属于2科3属5种,分别是秀丽白虾(Exopalaemon modestus)、日本沼虾(Macrobrachium nipponense)、锯齿新米虾中华亚种(Neocaridina denticulata sin...  相似文献   

13.
We present a set of river management tools based on a recently developed method for estimating the amount of salmon spawning habitat in coarse‐bedded rivers. The method, which was developed from a mechanistic model of redd building by female salmon, combines empirical relationships between fish length, redd area, and the sizes of particles moved by fish during spawning. Model inputs are the grain‐size indices D50 and D84 and an estimate of female fish length, which is used to predict the size of the redd that they will build and the size of the largest particle that they can move on the bed. Outputs include predictions of the fraction of the bed that the fish can use for redd building and the number of redds that they can build within the useable area. We cast the model into easy‐to‐use look‐up tables, charts, an Excel worksheet, a JavaScript web applet, and a MATLAB user interface. We explain how these tools can be used in a new, mechanistic approach to assessing spawning substrates and optimizing gravel augmentation projects in coarse‐bedded rivers. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
水文学与水力学相结合的南四湖洪水预报模型   总被引:7,自引:0,他引:7  
作为“滇池沿岸带生态修复技术研究及工程示范”系列研究论文之一,主要分析研究了滇池东北部沿岸带原有生 态状况、现有环境基础、实施局部岸段生态修复的有限目标、实现这一目标的主要限制性环境因子及其可控性.结果显 示,滇池东北部沿岸带入湖河流密集,发育良好的湖滩湿地原本是拦截净化入湖河水的生态屏障;湖滩湿地被围垦之后, 人工岸堤前风浪侵蚀强烈,水生植物和水生动物消失,但沙质沉积物淤积形成了次生浅滩;在次生沙滩上创建挺水植被, 仍然可以发挥沉积掩埋污染物、捕获分解漂浮性蓝藻的污染控制功效;实施生态修复所面临的限制性环境因子主要为风 浪的强烈冲刷和水质严重污染,这些因素都可以通过相应的环境改造与控制措施加以解决,因而实现生态修复目标是可 能的.  相似文献   

15.
Structure and composition of benthic macroinvertebrate assemblages were investigated during three consecutive years in six headwater streams that exhibit a high variation in environmental conditions, habitat structure and predatory pressure. We examined whether the abundance of functional feeding groups could be best predicted by the abundance of predators and some habitat and chemical variables. Mean density and biomass of macroinvertebrate functional feeding groups varied significantly throughout the study area. Stepwise multiple regression analyses revealed that both density and biomass of functional feeding groups was influenced primarily by chemical features of water. Shredder biomass and scraper density were also influenced by habitat features, the abundance of scrapers increasing in deeper localities at lower altitudes and with abundant macrophytes. The abundance of predatory invertebrates was related to the density and biomass of benthic prey. An influence of fish predation on invertebrate communities was not observed in the study streams. The finding that benthic communities in undisturbed headwater streams are mainly affected by water chemistry variables irrespective of fish predation and habitat features clearly highlight the sensitivity of functional feeding groups to changes in chemical features and their role as indicators for bioassessment.  相似文献   

16.
杨志  唐会元  龚云  朱迪  赵娜 《湖泊科学》2018,30(3):753-762
鱼类作为河流生物的重要组成部分,其在干支流之间的迁徙或移动不仅是常见的,而且通常与鱼类的繁殖活动相联系.金沙江下游支流作为金沙江下游河流网络的重要组成部分,分布有较为丰富的集合生境以及较高的鱼类物种多样性.研究鱼类在金沙江下游干支流的产卵迁徙对支流鱼类群聚结构变动的影响以及支流生境维持对区域鱼类种群维系的意义,对金沙江下游干支流鱼类的保护具有重要的意义.本文拟选择黑水河下游江段作为典型研究区域,通过2014年在该区域的逐月渔获物调查,采用聚类分析、基于距离的线性模型以及基于距离的冗余分析等多种多元分析方法,确定黑水河下游群聚结构的逐月变动是否严重依赖于鱼类在干支流之间的产卵迁徙以及黑水河下游自然生境的维持对区域鱼类种群的维系是否具有重要的意义.结果表明:黑水河下游鱼类群聚结构在金沙江雨季和旱季显著分离的同时,表征这种分离的8种指示种的性成熟个体丰度也在雨季和旱季间发生不同程度的变动.7种指示种鱼类性成熟个体丰度的变动能够解释黑水河下游鱼类群聚结构变动77.20%的变异,其中齐口裂腹鱼、大鳞副泥鳅和犁头鳅性成熟个体丰度的变动是影响黑水河下游鱼类群聚结构变动的3个最显著的因素,7种指示种鱼类在干支流的产卵迁徙对黑水河下游鱼类群聚结构的变动造成了明显的影响.研究表明:在金沙江干支流严重水电开发背景下,维持黑水河现有的自然生境面积对区域鱼类种群的维持具有重要意义.为实行上述目标,建议在白鹤滩水电站蓄水运行后,拆除黑水河的部分小型水坝,并采取其他河流再自然化措施以维持黑水河现有的自然生境面积.  相似文献   

17.
Basin‐scale predictive geomorphic models for river characteristics, particularly grain size, can aid in salmonid habitat identification. However, these basin‐scale methods are largely untested with actual habitat usage data. Here, we develop and test an approach for predicting grain size distributions from high resolution LiDAR (Light Detection and Ranging)‐derived topographic data for a 77 km2 watershed along the central California Coast. This approach improves on previous efforts in that it predicts the full grain size distribution and incorporates an empirically calibrated shear stress partitioning factor. The predicted grain size distributions are used to calculate the fraction of the bed area movable by spawning fish. We then compare the ‘movable fraction’ with 7 years of observed spawning data. We find that predicted movable fraction explains the paucity of spawning in the upper reaches of the study drainage, but does not explain variation along the mainstem. In search of another morphologic characteristic that may help explain the variation within the mainstem, we measure riffle density, a proxy for physical habitat complexity. We find that field surveys of riffle density explain 64% of the variation in spawning in these mainstem reaches, suggesting that within reaches of appropriate sized gravel, spawning density is related to riffle density. Because riffle density varies systematically with channel width, predicting riffle spacing is straightforward with LiDAR data. Taken together, these findings demonstrate the efficacy of basin‐scale spawning habitat predictions made using high‐resolution digital elevation models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Although littoral regions in northern lakes may sustain fish spawning grounds, little is known of the temporal or spatial aspects of their thermal and chemical regimes. This shortcoming is due in part to the difficulty in properly sampling these regions throughout the year with adequate spatial resolution. This problem is especially critical in lakes affected by episodic acidification during the spring snowmelt, a period of substantial importance to fisheries recruitment. A device was constructed to alleviate the problems associated with conventional water quality sampling of littoral regions. Constructed of thick walled polyvinyl chloride and permanently installed in the nearshore regions of an Adirondack lake, the episodic event sampler (EES) provided finely resolved (0.25 m) temperature and water chemistry data during the spring snowmelt period (February to May) of 1989. Although the construction and installation of the sampler represented a significant investment in labour and materials, this was offset by the high quality of the data collected. As the samplers were relatively undamaged by freeze-thaw activity, it is expected that they will continue to provide excellent information for several years.  相似文献   

20.
Andean Patagonian lakes are ultraoligotrophic and deep, have simple food webs and low fish diversity and abundance. In this work the distributional abundance data of fish was studied in two interconnected Andean Patagonian lakes with varying proportions of contrasting habitat types. Hydroacoustic data (120 kHz) were used to analyze fish abundance and habitat use during the mixis and stratification periods. Three types of habitat (near shore, surface pelagic and deep pelagic) and two groups of fish, based on size (Big Fish >12 cm total length and Fish Larvae and Small Fish <12 cm total length) were defined. The distribution of both fish groups in these lakes revealed differences in habitat use for each lake and period. Fish group abundance was related to the availability of habitat types, according to the morphology of each lake. The Big Fish group showed preference for the near shore habitat during lake stratification and always appeared as individual targets. The Fish Larvae and Small Fish group used mainly the pelagic habitat during mixis, where they formed dense sound scattering layers. However, during lake stratification many individual targets from this group were found both in pelagic and near shore habitats, which would seem to indicate a change in distributional behavior. This is possibly associated with niche changes in the Galaxiids (Galaxias spp), a key component of Northern Patagonian lake food webs. Lakes like Moreno Oeste, which are morphologically and structurally more complex, could have more diverse fish ensembles with higher abundances. In contrast, lakes of simple morphology with low development of near shore habitats and ample deep zones, like Lake Moreno Este, could present lower Big Fish abundance. The contrasting habitat availability between lakes accounts for the abundances and distribution patterns of each fish group. While in these lakes fish assemblage species composition could depends on the environmental filter, the particular structure of a fish assemblage in terms of the proportional abundances of species depends on proportional habitat type availability. We can speculate that in Andean Patagonian lakes Galaxiids mediate a habitat coupling process critical for the transfer of energy and matter in oligotrophic lakes. We may also consider that the Small Puyen in this type of lake is a keystone prey species that relieves predation pressure on other potential prey. The existence of deep pelagic habitats in numerous deep lakes in the Northern Patagonian Andean region provides not only daytime refuge for Galaxiids, which allows them to maintain their high numbers in the lakes, but could also, in the long term, act as a Galaxiid source for other water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号