首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
郭琳  刘娜  王国建  修鹏 《海洋与湖沼》2016,47(3):491-501
本文利用三维数值模型(ROMS-Co Si NE)分析了整个加利福尼亚流系水平流场的季节性演变过程,研究了美国加州中部海域流场垂直结构的季节性变化特征,并探讨了其动力学机制。研究发现:(1)数值模型能够较为准确的模拟流场的季节性变化,与浮标观测数据以及前人的研究结果符合良好;(2)从表层到200m,加利福尼亚潜流向高纬度扩张,近岸上升流急流则向高纬度撤退,加州南部海域的中尺度涡更显著;(3)在加州中部海域,近岸急流的最大值(约15cm/s)发生在夏季,位于近岸的表层海域;加利福尼亚潜流最大值(约4cm/s)发生于冬季,出现在离岸100km的125m处;加利福尼亚流在春季达到全年最大值(约5cm/s),流轴位于离岸(400—600km)的表层海水。加利福尼亚流系的流场具有显著的季节性变化,研究进一步表明这主要受地转关系调控。  相似文献   

2.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   

3.
A mooring observation of current velocity, temperature and bottom pressure was carried out approximately 30 km off the coast of Monbetsu, between August 7 and September 2, 2005, to investigate the characteristics of bottom boundary layer (BBL) off the Soya Warm Current (SWC). We succeeded in measuring the Ekman veering and bottom Ekman transport in the BBL. On comparing the observed current velocity with that represented by the classical theoretical equation, the observed alongshore current velocity in BBL disagreed with that represented by the classical theoretical equation, but the cross-shore one agreed well. However after applying a linear extrapolation for the alongshore current velocity to estimate the alongshore geostrophic current velocity above the bottom, we could explain the alongshore current velocity by that represented in the classical theoretical equation. Consequently, our observations strongly support one of the proposed formation mechanisms of the cold-water belt observed off the SWC, that is, the convergence of bottom Ekman transport. The volume transport of vertical pumping velocity was estimated to be (0.12–0.25) Sv. In addition, the vertical profile of average temperature in all observation periods shows that slightly warmer water lies beneath the homogenous temperature layer, in the BBL. The result is considered to imply that the down-slope advection due to bottom Ekman transport supplies the SWC water in BBL and the eddy diffusivity of order of 10−3 m2s−1 maintains the oceanic structure in the bottom mixed layer.  相似文献   

4.
ADCP, CTD and XBT observations were conducted to investigate the current structure and temperature, salinity and density distributions in the Soya Warm Current (SWC) in August, 1998 and July, 2000. The ADCP observations clearly revealed the SWC along the Hokkaido coast, with a width of 30–35 km and an axis of maximum speed of 1.0 to 1.3 ms−1, located at 20–25 km from the coast. The current speed gradually increased from the coast to a maximum and steeply decreased in the offshore direction. The SWC consisted of both barotropic and baroclinic components, and the existence of the baroclinic component was confirmed by both the density front near the current axis and vertical shear of the alongshore current. The baroclinic component strengthened the barotropic component in the upper layer near the axis of the SWC. The volume transport of the SWC was 1.2–1.3 SV in August, 1998 and about 1.5 SV and July, 2000, respectively. Of the total transport, 13 to 15% was taken up by the baroclinic component. A weak southeastward current was found off the SWC. It had barotropic characteristics, and is surmised to be a part of the East Sakhalin Current.  相似文献   

5.
6.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

7.
Current observations taken at depths between 630 and 830 m from the west coast South Island continental slope exhibit one‐ to four‐weekly periodicities superimposed on the semi‐diurnal tide. These variable flows at 630 m and otter large, longer‐timescale events have a significart onshore/offshore component of flow which leads to a similar transport of alongshore momentum and heat.  相似文献   

8.
The semi-permanent Durban Eddy is a mesoscale, lee-trapped, cold-core cyclonic circulation that occurs off the east coast of South Africa between Durban in the north and Sezela, some 70 km to the south. When present, strong north-eastward countercurrents reaching 100 cm s–1 are found inshore. It is hypothesised that the cyclone is driven by the strong south-westward flowing Agulhas Current offshore of the regressing shelf edge near Durban. Analysis of ADCP data and satellite imagery shows the eddy to be present off Durban approximately 55% of the time, with an average lifespan of 8.6 days, and inter-eddy periods of 4 to 8 days. After spin-up the eddy breaks loose from its lee position and propagates downstream on the inshore boundary of the Agulhas Current. The eddy is highly variable in occurrence, strength and downstream propagation speeds. There is no detectable seasonal cycle in eddy occurrence, with the Natal Pulse causing more variability than any seasonal signal. A thermistor array deployed in the eddy centre, together with ship CTD data, indicates upward doming of the thermal structure in the eddy core associated with cooler water and nutrients being moved higher in the water column, stimulating primary production. Together with the use of satellite imagery, our findings indicate a second mechanism of upwelling, viz. divergent upwelling in the northern limb of the eddy. Satellite-tracked surface drifters released in the eddy demonstrated the potential for nutrient-rich eddy water to be transported northwards along the inshore regions of the KwaZulu-Natal (KZN) Bight, thus contributing to the functioning of the bight ecosystem, as well as southwards along the KZN and Transkei coasts – both by the eddy migrating downstream and by eddy water being recirculated into the inshore boundary of the Agulhas Current itself.  相似文献   

9.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
One hundred and twelve stations of CTDO2 and LADCP were collected in the Agulhas Current system as part of the Agulhas Undercurrent experiment (AUCE) in March 2003. Along an offshore section, at approximately 35.6°S and 27.3°E to the northwest of the tip of the Agulhas Plateau, an unusual feature was revealed between 2200 and 3500 m depth, imbedded in the northward moving NADW layer. An anomalously high salinity of 34.83, 0.03 saltier than the surrounding water, was observed. Maximums in the potential temperature and oxygen were also found, with isotherms dropping by about 250 m over 50 km and a doming of the oxygen layers. From the convex lens structure of the neutral surfaces, we conclude that we sampled an anticyclonic eddy of NADW. Since the LADCP data reveal deep velocities up to 20 cm s−1, yet no anticyclonic circulation, whereas the geostrophic velocity referenced to the bottom shows a weak anticyclonic circulation, we inferred that we sampled the outer edge of the eddy and not its core. From an analysis of the water properties within the eddy and a comparison with known properties in the SE Atlantic Ocean and SW Indian Ocean, we conclude that the eddy was formed in the Agulhas Retroflection region. We speculate that the eddy was the result of an instability in the NADW slope current, which flows from the SE Atlantic around the Agulhas Bank. A deeply penetrating Agulhas Ring spun up the deep waters, pinching off an eddy, which later detached from the slope current and was carried southward. Once offshore, it coupled with the surface Agulhas Return Current, whose meandering path advected the eddy northeastward and ejected it over the Agulhas Plateau.  相似文献   

11.
Ship-based acoustic Doppler current profiler (S-ADCP) technology, used in survey mode, has enabled near- synoptic views of the in situ 3-D current field in the KwaZulu-Natal (KZN) Bight to be elucidated for the first time. Data acquired by the research vessels RS Africana and RS Algoa in June 2005, September 2007, March 2009 and July 2010 are presented. Each S-ADCP dataset showed similar circulation characteristics whereby the continental slope and outer shelf of the KZN Bight were strongly influenced by the south-westward flowing Agulhas Current. This was particularly evident in the extreme north between Cape St Lucia and Richards Bay where the shelf is narrowest and velocities exceeded 200 cm s?1. The widening of the bight to the south moves the Agulhas Current further from the coast, resulting in a diminishing velocity gradient on the outer shelf which terminates around the midshelf axis. The southern region of the bight was mostly influenced by the Durban cyclonic eddy (Durban Eddy), and in June 2005 and September 2007, by a cyclonic ‘swirl’ that occupied the entire southern half of the KZN Bight, the latter identified by a combination of S-ADCP-, satellite-derived SST- and ocean colour data. Satellite data showed low-chlorophyll offshore water to move into this swirl and northwards along the inner- and midshelf, reaching the Thukela River. Inner-shelf circulation north of the Thukela River was weak (<20 cm s?1) and highly variable. Satellite-tracked surface drogues deployed in the Durban Eddy found their way into the northward coastal current in the KZN Bight, with velocities exceeding 90 cm s?1 at times. The drogues also highlighted the strong influence of wind, especially in the northern bight between Durnford Point and Cape St Lucia, with residence times on the shelf exceeding 14 days, suggesting this region to be of biological importance particularly for recruitment.  相似文献   

12.
The coral reef system of the Abrolhos Bank, Brazil, is located between 10 and 65 km off the coast. Suspended particulate matter between the coast and the inner arc of the reef was mainly composed of kaolinite clay and reworked fossil carbonate fragments, resuspended from nearshore shoals. Strong permanent and tidal alongshore currents in the nearshore channel together with the geomorphological configuration of the inner arc formed an efficient hydrodynamic and topographic barrier to offshore transport of land-derived material. Most of the material was being transported alongshore. Suspended particulate matter between the inner and outer arcs was dominated by carbonate shells, coral fragments, and needle-shaped biogenic opal, and the reef system was in large part being dominated by the oligotrophic waters of the Brazil Current.  相似文献   

13.
High spatial resolution measurements of current velocity performed by the shipboard mounted Acoustic Doppler Current Profiler (ADCP) in the lateral boundary layer of the southern Gulf of Finland during two 5-day periods are described and analysed with a focus on the dominant dynamics. The measurement site represents a small (15×20 km), relatively deep (up to 100 m) bay opened to large-scale estuarine circulation. The measurement period was characterized by calm winds and a strong seasonal pycnocline (Brunt-Väisälä frequencyN=6–9*10−2 s−1). The quasi-steady velocity field revealed polarization of currents along the shore whereas an intensive baroclinic coastal jet was observed over a cross-shore scale of 1–2 km. The level of vertical separation of the alongshore flow coincided with the pycnocline at the coast, but was shifted below it in the offshore region. The cross-shore flow was considerably weaker and showed a three-layer structure with an opposite phase between the first and second surveys. It is suggested that the observed jet resembles a non-locally forced eastward propagating coastally trapped wave. In the offshore area the alongshore flow field satisfies local geostrophic balance quite well, except in the pycnocline where strong vertical stratification exerts considerable vertical stress. As vertical velocity shear is well correlated with vertical stratification, the horizontal advection prevails over vertical mixing. Horizontal inhomogeneities of density distribution are partly explained by vertical velocities with an estimated magnitude of less than 0·6 mm/s and the spatial pattern following bottom topography.  相似文献   

14.
A reduced estimate of Agulhas Current transport provides the motivation to examine the sensitivity of Indian Ocean circulation and meridional heat transport to the strength of the western boundary current. The new transport estimate is 70 Sv, much smaller than the previous value of 85 Sv. Consideration of three case studies for a large, medium and small Agulhas Current transport demonstrate that the divergence of heat transport over the Indian Ocean north of 32°S has a sensitivity of 0.08 PW per 10 Sv of Agulhas transport, and freshwater convergence has a sensitivity of 0.03×109 kg s−1 per 10 Sv of transport. Moreover, a smaller Agulhas Current leads to a better silica balance and a smaller meridional overturning circulation for the Indian Ocean. The mean Agulhas Current transport estimated from time-series current meter measurements is used to constrain the geostrophic transport in the western boundary region in order to re-evaluate the circulation, heat and freshwater transports across 32°S. The Indonesian Throughflow is taken to be 12 Sv at an average temperature of 18°C. The constrained circulation exhibits a vertical–meridional circulation with a net northward flow below 2000 dbar of 10.1 Sv. The heat transport divergence is estimated to be 0.66 PW, the freshwater convergence to be 0.54×109 kg s−1, and the silica convergence to be 335 kmol s−1. Meridional transports are separated into barotropic, baroclinic and horizontal components, with each component conserving mass. The barotropic component is strongly dependent on the estimated size of the Indonesian Throughflow. Surprisingly, the baroclinic component depends principally on the large-scale density distribution and is nearly invariant to the size of the overturning circulation. The horizontal heat and freshwater flux components are strongly influenced by the size of the Agulhas Current because it is warmer and saltier than the mid-ocean. The horizontal fluxes of heat and salt penetrate down to 1500 m depth, suggesting that warm and salty Red Sea Water may be involved in converting the intermediate and upper deep waters which enter the Indian Ocean from the Southern Ocean into warmer and saltier waters before they exit in the Agulhas Current.  相似文献   

15.
In July 1998, a bottom-mounted Acoustic Doppler Current Profiler was deployed at 36m depth in the centre of the Tsitsikamma National Park on the eastern Agulhas Bank, South Africa. The purpose was to investigate transport of chokka squid Loligo vulgaris reynaudii paralarvae hatched on the inshore spawning grounds (<60m) and ichthyoplankton spawned within the park. Analysis of the first 12 months of data (July 1998–June 1999) shows that surface flow was mainly eastward (alongshore), with a maximum velocity (u-component) of +115cm s?1 and an average of +24cm s?1. Generally, velocity decreased with depth, with a maximum bottom velocity (u-component) of +65cm s?1 and an average of +10cm s?1. Data from a nearby thermistor array show that the water column was usually isothermal during winter (July–September), with bottom flow in the same direction as the surface layer. In summer (December–March), vertical stratification was most intense, and surface and bottom flows differed in velocity and direction. Potential net monthly displacements calculated for three depths (5m, 23m and 31m) indicate that passive, neutrally buoyant biological material (e.g. squid paralarvae, fish eggs and larvae) would likely be transported eastwards in the surface layer for eight of the 12 months, and would generally exceed distances of 220km month–1. Displacement in the bottom layer was more evenly distributed between east and west, with net monthly (potential) transport typically 70–100km, but reaching a maximum of 200km. Wind-driven coastal upwelling, prevalent during the summer, causes the surface layer of the coastal counter-current to flow offshore for several days, resulting in potential displacement distances of 40km from the coast. These results suggest that squid paralarvae hatched on the inshore spawning grounds are not generally transported towards the 'cold ridge', a prominent semi-permanent oceanographic feature of cold, nutrient-rich upwelled water, where food is abundant, and that fish larvae, whether from the surface or bottom layer, are exported beyond the boundaries of the Tsitsikamma National Park.  相似文献   

16.
An inverse model of the large scale circulation in the South Indian Ocean   总被引:1,自引:0,他引:1  
An overview of the large-scale circulation of the South Indian Ocean (SIO) (10°S-70°S/20°E-120°E) is proposed based on historical hydrographic data (1903-1996) synthesized with a finite-difference inverse model. The in situ density, potential temperature and salinity fields of selected hydrographic stations are projected on the basis of EOFs. Then the EOF coefficients (the projected values) are interpolated on the model grid (1° in latitude, 2° in longitude) using an objective analysis whose spatial correlation functions are fitted to the data set. The resulting fields are the input of the inverse model. This procedure filters out the small-scale features. Twelve modes are needed to keep the vertical structures of the fields but the first three modes are sufficient to reproduce the large-scale horizontal features of the SIO: the Subtropical Gyre, the Weddell Gyre, the different branches of the Antarctic Circumpolar Current.The dynamics is steady state. The estimated circulation is in geostrophic balance and satisfies mass, heat and potential vorticity conservation. The wind and air-sea heat forcing are annual means from ERS1 and ECMWF, respectively.The main features of the various current systems of the SIO are quantified and reveal topographic control of the deep and bottom circulation. The cyclonic Weddell Gyre, mainly barotropic, transports 45 Sv (1 Sv = 106m3/s), and has an eastern extension limited by the southern part of the Antarctic Circumpolar Current.The bottom circulation north of 50°S is complex. The Deep Western Boundary Currents are identified as well as cyclonic recirculations. South east of the Kerguelen Plateau, the bottom circulation is in good agreement with previous water mass analysis. The comparison between some recent regional analysis and the inverse estimation is limited by the model resolution and lack of deep data.The meridional overturning circulation (MOC) is estimated from the finite difference inverse model. Between 26°S and 32°S the reversal of the current deepens and reaches 1400 m at 32°S. The major part of the deep meridional transport at 32°S is located between the African coast and the Madagascar Ridge, carried by the Agulhas Undercurrent. The mean value for this meridional thermohaline recirculation is 8.8 ± 4.4 Sv between 26°S and 32°S. The Agulhas Undercurrent (11 Sv) is associated with a weak Agulhas Current (55 Sv). The MOC is thus trapped in the western margin of the Southwest Indian Ridge. The corresponding vertical velocity along 32°S between 30°E and 42°E is 7.2 × 10−5 ± 8.9 × 10−5 cm s−1. The net meridional heat flux represents −0.53 PW at 18°S and −0.33 PW at 32°S (negative values for southward transports). The intensity of the meridional heat flux is linked to the intensity of the Agulhas Current and to the vertical mixing.  相似文献   

17.
Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.  相似文献   

18.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

19.
Particle tracking experiments were conducted for the Sea of Okhotsk using a three-dimensional ocean circulation model, as a step toward the simulation of oil spills. The model’s reproducibility is first examined in detail. Comparison with surface drifter and moored ADCP data shows that the model successfully reproduces the velocity field over the shelves, particularly in the weak stratification period. This is because the current variability is simply determined by integration of the alongshore component of the wind stress over the coast from which arrested topographic waves propagate. Good agreement even in the ice-covered period implies that the neglect of sea ice in the model is not a problem for reproduction of the current over the shelves. Good agreement also supports the correction of ECMWF wind speed by a factor of 1.25. A series of particle tracking experiments was carried out to examine the case of particles released from the Sakhalin oil field at depths of 0 m and 15 m. Regardless of the deployment month and year, most particles at depth 15 m are transported southward along the Sakhalin coast, in accordance with the abrupt intensification of the East Sakhalin Current in October, finally arriving offshore of Hokkaido in November–January. Particles at the surface, which are affected by wind drift in addition to the ocean current, show larger yearly variability. In years when the offshoreward-wind dominates, the particles would be advected out of the mainstream of the current and would not be transported offshore of Hokkaido.  相似文献   

20.
The first global ocean reanalysis with focus on the Asian-Australian region was performed for the period October 1992 to June 2006. The 14-year experiment assimilated available observations of altimetric sea-level anomaly, satellite SST and quality-controlled in situ temperature and salinity profiles from a range of sources, including field surveys and the Argo float array. This study focuses on dominant circulation patterns in the South-East Asian/Australian region as simulated by an eddy-resolving and data-assimilating ocean general circulation model. New estimates of the ocean circulation are provided which are largely in agreement with the limited number of observations. Transports of key currents in the region are as follows: The total (top-to-bottom) annual mean Indonesian Throughflow transport and its standard deviation are 9.7 ± 4.4 Sv from the Pacific to the Indian Ocean with a minimum in January (6.6 Sv) and a maximum in April (12.3 Sv). The Leeuwin Current along the west coast of Australia is dominated by eddy structures with a mean southward transport of 4.1 ± 2.0 Sv at 34°S. Along the southern coast of Australia a narrow shelf edge current known as the South Australian Current advects 4.5 ± 2.6 Sv eastward at 130°E. The South Australian Current converges east of Tasmania with the eddy-rich extension of East Australian Current. At 32°S this current transports 36.8 ± 18.5 Sv southward. A dominating feature of the circulation between north-eastern Australia and Papua-New Guinea is the strong and quasi-permanent Coral Sea Gyre. This gyre is associated with the highly variable Hiri Current which runs along the south coast of Papua-New Guinea and advects 8.2 ± 19.1 Sv into the Western Pacific Ocean. All of these transport estimates are subject to strong eddy variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号