首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rockfall hazard and risk analysis for Monte da Lua,Sintra, Portugal   总被引:1,自引:0,他引:1  
The prediction of rockfall trajectories below a rock cliff is essential in susceptibility, hazard and risk maps, particularity close to populated areas. The Monte da Lua hill area in Portugal, a tourist destination close to the historic city of Sintra (UNESCO World Heritage), is a typical granite boulder chaos landscape where from time to time rockfalls occur, the last such event having occurred on 29 January 2002. This area is therefore suitable to develop a rockfall study in order to provide hazard and risk maps a basis for mitigation measures. A preliminary investigation of the area leads to the identification of 188 potentially dangerous boulders. Detailed locations and geotechnical characteristics in terms of geometry, strength and context were sampled for each boulder. Digital elevations at 1 × 1 m resolution, known rockfall trajectory and building locations are provided in a GIS project for the study together with the spatial database of boulder characteristics. The modelling approach was conducted in two steps: (1) discrimination of the boulders in terms of static and dynamic mobility behaviour with multivariate analysis; (2) stochastic simulation of rockfall trajectories. The rockfall trajectory algorithm proposed is straightforward and is only dependent on elevation data, initial location of boulders and a friction angle. Due to the slope of the area, it assumes that rockfall is always of the rolling or sliding type. The friction angle was calibrated on the basis of the rockfall travel distance recorded on 29 January 2002 and generates simulated “realistic” trajectories. A smaller friction angle increases all simulated trajectories, leading to more “pessimistic” scenarios. The combined analysis of trajectories and potential damage to buildings and discrimination in terms of static and dynamic behaviour provides a final table in which all 188 sampled boulders are classified in one of the five risk grades.  相似文献   

2.
Rockfalls are common in the steep and vertical slopes of the Campania carbonate massifs and ridges, and frequently represent the main threat to the anthropogenic environment, potentially damaging urban areas, scattered houses, roads, etc. Despite the generally limited volumes involved, the high velocity of movement (from few to tens of metres per second) poses rockfalls among the most dangerous natural hazards to man. Evaluating the rockfall hazard is not an easy task, due to the high number of involved factors, and particularly to the difficulty in determining the properties of the rock mass. In this paper, we illustrate the assessment of the rockfall hazard along a small area of the Sorrento Peninsula (Campania region, southern Italy). Choice of the site was determined by the presence of a road heavily frequented by vehicles. In the area, we have carried out detailed field surveys and software simulations that allow generating simple rockfall hazard maps. Over twenty measurement stations for geo-mechanical characterization of the rock mass have been distributed along a 400-m-long slope of Mount Vico Alvano. Following the internationally established standards for the acquisition of rock mass parameters, the main kinematics have been recognized, and the discontinuity families leading to the different failures identified. After carrying out field experiments by artificially releasing a number of unstable blocks on the rock cliff, the rockfall trajectories along the slope were modelled using 2-D and 3-D programs for rockfall analysis. The results were exploited to evaluate the rockfall hazard along the threatened element at risk.  相似文献   

3.
The Tramuntana range, in the northwestern sector of the island of Mallorca (Balearic Islands, Spain), is frequently affected by rockfalls which have caused significant damage, mainly along the road network. In this work, we present the procedure we have applied to calibrate and validate rockfall modelling in this region, using 103 cases of the available detailed rockfall inventory (630 rockfall events collected since the eighteenth century). We have exploited STONE (Guzzetti et al. 2002), a GIS-based rockfall simulation software which computes 2D and 3D rockfall trajectories starting from a DTM and maps of the dynamic rolling friction coefficient and of the normal and tangential energy restitution coefficients. The appropriate identification of these parameters determines the accuracy of the simulation. To calibrate them, we have selected 40 rockfalls along the range which include a wide variety of outcropping lithologies. Coefficients values have been changed in numerous attempts in order to select those where the extent and shape of the simulation matched the field mapping. Best results were summarized with the average statistical values for each parameter and for each geotechnical unit, determining that mode values represent more precisely the data. Initially, for the validation stage, 10 well-known rockfalls exploited in the calibration phase have been selected. Confidence tests have been applied to their modelling results taking into account not only the success but also the mistakes. The best accuracy is obtained when the rockfall has a preferential trajectory and worse results when the rockfall follows two or more trajectories. Additionally, the greater the rockfall runout length, the less precise the simulation is. We have further validated the calibrated parameters along the Ma-road (111 km), the main transportation corridor in the range, using 63 rockfall events that occurred during the past 18 years along the road. Of the rockfalls where source areas were properly identified, 81.5 % are well represented by STONE modelling, as the travel paths and the depositional areas are successfully ascertained. Results of the analysis have been used by the Road Maintenance Service of Mallorca to assess hazard and risk posed by rockfall at regional scale to design the road management plan.  相似文献   

4.
Multi-scenario Rockfall Hazard Assessment Using LiDAR Data and GIS   总被引:1,自引:0,他引:1  
Transportation corridors that pass through mountainous or hilly areas are prone to rockfall hazard. Rockfall incidents in such areas can cause human fatalities and damage to properties in addition to transportation interruptions. In Malaysia, the North–South Expressway is the most significant expressway that operates as the backbone of the peninsula. A portion of this expressway in Jelapang was chosen as the site of rockfall hazard assessment in multiple scenarios. Light detection and ranging techniques are indispensable in capturing high-resolution digital elevation models related to geohazard studies. An airborne laser scanner was used to create a high-density point cloud of the study area. The use of 3D rockfall process modeling in combination with geographic information system (GIS) is a beneficial tool in rockfall hazard studies. In this study, a 3D rockfall model integrated into GIS was used to derive rockfall trajectories and velocity associated with them in multiple scenarios based on a range of mechanical parameter values (coefficients of restitution and friction angle). Rockfall characteristics in terms of frequency, height, and energy were determined through raster modeling. Analytic hierarchy process (AHP) was used to compute the weight of each rockfall characteristic raster that affects rockfall hazard. A spatial model that considers rockfall characteristics was conducted to produce a rockfall hazard map. Moreover, a barrier location was proposed to eliminate rockfall hazard. As a result, rockfall trajectories and their characteristics were derived. The result of AHP shows that rockfall hazard was significantly influenced by rockfall energy and then by frequency and height. The areas at risk were delineated and the hazard percentage along the expressway was observed and demonstrated. The result also shows that with increasing mechanical parameter values, the rockfall trajectories and their characteristics, and consequently rockfall hazard, were increased. In addition, the suggested barrier effectively restrained most of the rockfall trajectories and eliminated the hazard along the expressway. This study can serve not only as a guide for a comprehensive investigation of rockfall hazard but also as a reference that decision makers can use in designing a risk mitigation method. Furthermore, this study is applicable in any rockfall study, especially in situations where mechanical parameters have no specific values.  相似文献   

5.
Rockfall, up to several hundreds of cubic meters, is a frequent and rapid landslide which menaces extensive areas in mountainous territories. Rockfall susceptibility zoning map at a large scale (1:5000–1:25 000) can be the first tool for land use planning in order to manage rockfall risk. A methodology allowing to analyze susceptibility in extensive areas with optimum cost/benefit relationship is needed. This work analyzes rockfall susceptibility in an extensive rocky mountain of the Principality of Andorra (Pyrenees Mountains), first on the rock slope and then on the exposed area located below. The rockfall record, obtained by means of geomorphological analysis, supplies the main data to analyze the susceptibility on the rock slope. An additional historical inventory verifies the accuracy of rockfall sizes recorded by means of the geomorphological analysis. According to the classification recommended by the Guidelines of Joint Technical Committee, the density of rockfall features on the rock slope assesses susceptibility in four levels. Subsequently, susceptibility on exposed areas has been analyzed by means of reach probability of rock blocks analysis using empirical models. Data acquired from thirteen recent events, from 1999 to 2004, have been used to verify the accuracy of the two empirical models mainly used (reach angle and shadow angle). Five reach probability limits (1, 0.5, 0.25, 0.01, and 0) establish boundaries between susceptibility levels. The resulting rockfall susceptibility zoning map allows: (a) to identify land areas and human elements exposed to rockfalls and, (b) to establish several exposition levels. This map can be a useful and cost-effective tool for administrations responsible to manage natural risk in order to guide urban grow in extensive areas or decide upon work programs based on in-depth analysis (hazard and risk).  相似文献   

6.
Paolo Budetta 《Landslides》2011,8(3):381-389
On December 15, 2008, a rock slide of approximately 4,000 m3 occurred near San Severino di Centola (Cilento, Province of Salerno). The landslide occurred along very steep bedding planes intersected by tectonic joints affecting a rocky cliff. The landslide debris, formed by several boulders, came to a halt along the gentler slope below. Many blocks reached the slope base including the national road n° 562 and injuring a motorist on the road. Furthermore, the road suffered heavy damages causing a halt in traffic for many weeks. Several signs of the impacts were detected along the slope and on the road; also, the volumes of some boulders were measured. The area affected by block trajectories stretch down slope about 4,900 m2. By means of 2D and 3D trajectory codes using the “lumped-mass” method, it was possible to estimate more suitable impact energy restitution and rolling friction coefficients, to reconstruct rock fall trajectories, and to calculate total kinetic energies. Extending to the surrounding slope (surface about 2 ha) these data, a hazard scenario was carried out, displaying the pattern of iso-energy distribution curves calculated along 11 critical profiles, and zones exposed to 70% and 30% of frequencies of block transits and endpoints. Successively, with reference to the Swiss Federal Guidelines, another scenario was prepared on the basis of rock fall intensity values and the return period of the 2008 landslide event. In this way, it was possible to define areas of high, moderate and low hazard. The degrees of hazard are assigned according to their consequences for construction activity and outline zones where additional protection is required. The construction of a retaining embankment was believed suitable for local risk mitigation.  相似文献   

7.
A rockfall is a mass instability event frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. After its detachment, the rock mass may disaggregate and break due to the impact with the ground surface, thus producing new rock fragments. The consideration of the fragmentation of the rockfall mass is critical for the calculation of the trajectories of the blocks and the impact energies and for the assessment of the potential damage and the design of protective structures. In this paper, we present RockGIS, a GIS-based tool that simulates stochastically the fragmentation of the rockfall, based on a lumped mass approach. In RockGIS, the fragmentation is triggered by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The fragmentation model has been calibrated and tested with a 10,000 m3 rockfall that took place in 2011 near Vilanova de Banat, Eastern Pyrenees, Spain.  相似文献   

8.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   

9.
山西壶关太行山大峡谷景区为中国最美十大峡谷之一,但景区落石灾害频发,严重威胁景区安全运营。本文基于高精度地形信息与岩土体强度特性,采用坡度角分布方法开展区域尺度潜在落石源区识别,并引入岩体破坏敏感性指标定量描述潜在落石源区失稳概率。然后,利用经验模型Flow-R模拟落石运动扩散过程,获取落石的传播概率与能量分布情况。最后,提出落石危险性双因子评价模型实现落石危险性定量评估。获得主要结论如下:(1)研究区内潜在落石源区面积为25.7 km2(35.7%),主要以条带状分布于峡谷两侧陡壁。其中岩体破坏高敏感性区为3.3 km2。(2)研究区落石高危险区面积达3.22 km2,主要威胁景区内游客集散地与交通线路,尤其在S327荫林线红豆峡入口处落石危险性最高。(3)野外调查验证结果表明了应用坡度角分布方法识别潜在落石源区的高效性与准确性,提出的双因子评价模型可为峡谷区落石危险性评估提供快速解决方案。本文提出的“区域落石源区识别-源区失稳概率分析-落石危险性评估”的一整套技术方案能够为类似的高山峡谷区落石灾害早期识别及风险防控提供技术参考。  相似文献   

10.
The Son Poc rockfall took place on the 6th of March 2013 in the municipality of Bunyola, on the southern side of the Tramuntana Range (Mallorca) and after a rainy and cold period on the region. A volume of rock of 4.000 m3 was detached from the cliff crowning the peak falling down by toppling. The impact of the boulder caused its fragmentation, and numerous boulders bounced and rolled downslope with volumes from 1 to 35 m3, following two trajectories: southwest (SW) and southeast (SE). The SE trajectory, with a larger runout (376 m), reached an urban area, where some of the boulders hit the roofs and walls of nearby houses, stopping others in their gardening areas. Fortunately, no fatalities occurred despite of the presence of some people at that moment, but the event caused great concern in a region which lives from and for tourism. The Son Poc rockfall has been simulated using RocPro3D software which uses GIS technology to produce 3D rockfall trajectories lines, estimated velocity and energy of falling blocks, as well as bounce heights, impacts, and stopping points. The results are in agreement with field observations and with a very good accuracy between real and modeled outcomes.  相似文献   

11.
Rock fall is a common natural hazard causing significant damage to infrastructure and loss of life and property. This paper describes selection of prevention method, construction processes and the results of a rockfall hazard assessment for the village of Sarica (Gürün region, Turkey) based on an engineering-geological model. The study area is located on the lower parts of an area with very steep cliffs and 40-500 slopes with fractured sedimentary and volcanic rocks. Detailed studies have been conducted in the region to prevent the risk of any rockfalls. Maps and charts are prepared including the rock blocks that are likely to fall and the related housing area under the risk. It was found that block sizes reached 3 m3. Rockfall analyses were performed along the selected profiles using the Rocfall V.5.0 software. Kinetic energy, bounce height, horizontal location of rock end-points and velocity of the rocks along each section were evaluated separately for each profile. This data was used to select design and construction of rockfall preventing system. In this study professional type rock fall barrier (catchment fence) was used. This method was chosen because it was cheaper, more practical and reliable than others.  相似文献   

12.
There exists a transition between rockfalls, large rock mass failures, and rock avalanches. The magnitude and frequency relations (M/F) of the slope failure are increasingly used to assess the hazard level. The management of the rockfall risk requires the knowledge of the frequency of the events but also defining the worst case scenario, which is the one associated to the maximum expected (credible) rockfall event. The analysis of the volume distribution of the historical rockfall events in the slopes of the Solà d’Andorra during the last 50 years shows that they can be fitted to a power law. We argue that the extrapolation of the F-M relations far beyond the historical data is not appropriate in this case. Neither geomorphological evidences of past events nor the size of the potentially unstable rock masses identified in the slope support the occurrence of the large rockfall/rock avalanche volumes predicted by the power law. We have observed that the stability of the slope at the Solà is controlled by the presence of two sets of unfavorably dipping joints (F3, F5) that act as basal sliding planes of the detachable rock masses. The area of the basal sliding planes outcropping at the rockfall scars was measured with a terrestrial laser scanner. The distribution of the areas of the basal planes may be also fitted to a power law that shows a truncation for values bigger than 50 m2 and a maximum exposed surface of 200 m2. The analysis of the geological structure of the rock mass at the Solà d’Andorra makes us conclude that the size of the failures is controlled by the fracture pattern and that the maximum size of the failure is constrained. Two sets of steeply dipping faults (F1 and F7) interrupt the other joint sets and prevent the formation of continuous failure surfaces (F3 and F5). We conclude that due to the structural control, large slope failures in Andorra are not randomly distributed thus confirming the findings in other mountain ranges.  相似文献   

13.
The paper deals with the assessment of rockfall risk to persons travelling in vehicles along the SS163 road, an important transportation corridor supporting a high vehicle traffic within the well-known tourist area of the Amalfi Coast (southern Italy). To this aim, the Rockfall Hazard Rating System (RHRS) and quantitative risk assessment (QRA) procedures, in this latter case for three rockfall risk scenarios, are applied. With reference to a large portion (33.820 out of a total of 50.365 km) of the SS163 road, the obtained QRA results highlight that, although the estimated individual risk to life satisfies the adopted tolerable risk criterion, the computed societal risk cannot be tolerated. Starting from this result, site-specific QRA analyses—carried out with reference to some road sections chosen on the basis of the RHRS results—allow the detection of the SS163 portions where the individual risk to life exceeds the tolerable risk threshold and, then, the recourse to mitigation measures could reveal necessary. In this regard, RHRS and QRA methods can be considered complementary tools in prioritizing the road sections where construction funds can be profitably spent in order to mitigate the rockfall risk with reference to both direct consequences (life loss) and indirect ones (traffic delay and diversions).  相似文献   

14.
Highways and railroads situated within rugged terrain are often subjected to the hazard of rockfalls. The task of assessing roadside rockmasses for potential hazards typically involves an on-site visual investigation of the rockmass by an engineer or geologist. At that time, numerous parameters associated with discontinuity orientations and spacing, block size (volume) and shape distributions, slope geometry, and ditch profile are either measured or estimated. Measurements are typically tallied according to a formal hazard rating system, and a hazard level is determined for the site. This methodology often involves direct exposure of the evaluating engineer to the hazard and can also create a potentially non-unique record of the assessed slope based on the skill, knowledge and background of the evaluating engineer. Light Detection and Ranging (LiDAR)–based technologies have the capability to produce spatially accurate, high-resolution digital models of physical objects, known as point clouds. Mobile terrestrial LiDAR equipment can collect, at traffic speed, roadside data along highways and rail lines, scanning continual distances of hundreds of kilometres per day. Through the use of mobile terrestrial LiDAR, in conjunction with airborne and static systems for problem areas, rockfall hazard analysis workflows can be modified and optimized to produce minimally biased, repeatable results. Traditional rockfall hazard analysis inputs include two distinct, but related sets of variables related to geological or geometric control. Geologically controlled inputs to hazard rating systems include kinematic stability (joint identification/orientation) and rock block shape and size distributions. Geometrically controlled inputs include outcrop shape and size, road, ditch and outcrop profile, road curvature and vehicle line of sight. Inputs from both categories can be extracted or calculated from LiDAR data, although there are some limitations and special sampling and processing considerations related to structural character of the rockmass, as detailed in this paper.  相似文献   

15.
GIS-based evaluation of rockfall risk along routes in Greece   总被引:1,自引:0,他引:1  
This article presents a GIS-based system, designed to assist in the management of rockfall risk along Greek routes. The system was developed in two stages; the field data collection led to the implementation of a rockfall rating system with its fundamental parameters, while the data process concluded to a rockfall data base and a GIS-based interface. The fundamental parameters were derived from the rockfall hazard rating system developed by Pierson et al. at the Oregon State Highway Division and provide a coherent approach to decide the type and the cost of protection measures to be applied in an area affected by rockfalls and presents highest rockfall risk. The system presented in this paper as well as the original system comprises exponential scoring functions that represent the increased hazard and reflected in nine categories forming the classification. The method presented in this paper modified certain categories from the original system which were described qualitatively and may lead to quite subjective estimations. These categories are ditch effectiveness; climate and presence of water on slope as well as rockfall history. Moreover, the original category “Geologic characteristic” was changed to Structural and Discontinuities Index; an index that relates blockiness of rock mass and orientation of joints with their weathering condition and their roughness. This index follows the classification of weathering and joint’s roughness suggested by International Society of Rock Mechanics, while other modifications regarding the categories “decision sight distance” and “roadway width” were applied based on Greek standards. An application of this modified method to a 3 km road which connects Athinios port and Fira, the capital of Santorini island, Greece, a high traffic intensity road where rockfalls periodically cause traffic interruptions is presented. The method was applied in fifteen cross sections of slopes adjacent to the road and the analyses showed increased risk and the need for urgent remedial works.  相似文献   

16.
滚石灾害是山区常见的地质灾害类型,研究滚石的运动特征对地质灾害调查及危险性评估有着重要意义。通过对尼泊尔某项目滚石灾害后现场进行工程地质调查,分析其灾害成因机制,查明事故原因。调查结果表明:9 ·15灾害非人类活动的影响,属自然地质灾害,造成事故的主要原因为超高位岩体崩塌,而滚石的范围又超过前期预测的危险区。通过现场痕迹分析,推测出滚石的运动路径。根据调查出的撞击点位置、物质组成及几何特征,作者提出运用运动学原理还原滚石运动轨迹,并利用rocfall软件对超高位危岩体崩落后的运动轨迹进行随机模拟分析,推算出超高位危岩体崩落后能量大小的变化,为防护措施方案提供可靠的依据。张口式帘式网韧性强,防护能级高,对高陡边坡滚石灾害能起到很好的效果。本文可为类似高陡边坡的危岩治理防护提供参考。  相似文献   

17.
This study shows a rockfall susceptibility assessment at local scale in north Beijing of China, including the identification of rockfall sources onsite by terrain and rock discontinuities analysis and run-out distance prediction by Rocfall? simulation. Two types of rockfall were defined including one type on the cliffs with long inclined slopes and another type on the road slopes with low height. Two historical rockfall events were used to back-calibrating the parameters used for run-out distance simulation. Based on the work, rockfall susceptibility map at local scale was created in GIS, which was compared with the map obtained at regional scale (entire Huairou district scale). Due to the difference of approaches applied, procedure of assessment and types of source data acquired, the two resulting rockfall susceptibility maps are proved to be different. Still, both of them are useful and could be used at different level’s decision for rockfall prevention and mitigation. Different types of uncertainties exist in the study of rockfall susceptibility assessment. To reduce the uncertainties, studies on both approaches and techniques are suggested.  相似文献   

18.
Disasters caused by events such as earthquake, flooding, rock falls, landslides are often encountered. However, generally, the reasons for the destructive and devastating effects of these nature events are that settlement locations were chosen without site investigation studies, or that available studies were inadequate. Such inadequacies in the field are related to inappropriate settlement location and the resulting damage caused by rock falls. This study evaluated rockfall risk in a settlement that developed in a similar manner. The study was carried out in Bo?aziçi village of Kemah (Erzincan/Turkey), which is located in a very important tectonic zone. The study site is located on the lower sections of an area with very steep cliffs and 50–75° slopes. This cliff, which is the source of rockfalls, has a slope dip of approximately 90°. The cliff comprises 25–30 m high, fractured and cracked basaltic volcanic mass. To determine block size in the study area, scanline survey measurements and block size measurements were performed on blocks that loosened and fell from the cliff face. It was found that block sizes reached 6 m3. Rockfall analyses were performed along the selected profiles using the Rockfall V.4.0 software. Kinetic energy, bounce height, horizontal location of rock end-points, and velocity of the rocks along each section were evaluated separately for each profile. This data were used to produce distribution maps for each profile and the settlement was evaluated in terms of rockfall risk. The results indicate that the study area was at risk of future rockfalls and that it would be appropriate to relocate one part of the settlement.  相似文献   

19.
2010年青海玉树Ms 7.1级大地震引发了一系列次生地质灾害,其中地震落石是除地震滑坡外沿断裂带及其邻侧最常见的现象。对玉树震区落石的调查发现,该区多处存在非常典型的多期地震落石分布现象,指示该区地震落石的发育与其他古地震现象类似,具有多期性和一定的原地复发性。实地调查表明,该区地震落石分布的主要特征为:多集中发育在活动断裂带附近的陡峭基岩斜坡下方,分布零散,且滚动较远,并常与古地震滑坡相伴生。初步获得的8个地震落石钙膜U系测年结果分布在距今6030±300a BP、4720±210a BP、3530±490~3560±280a BP、2010±160a BP、1090±70a BP、760±20a BP和230±20a BP年龄段,与该区古地震探槽和滑坡反映的地震事件比较吻合,进一步揭示玉树断裂带附近在全新世中晚期发生过多期可导致地表产生地震落石的事件。同时也说明,地震落石及其钙膜测年是特别值得进一步探索的潜在古地震研究方法或途径。  相似文献   

20.
Quantitative assessment of the residual risk in a rockfall protected area   总被引:1,自引:1,他引:1  
Quantitative Risk Assessment (QRA) has become an indispensable tool for the management of landslide hazard and for planning risk mitigation measures. In this paper we present the evaluation of the rockfall risk at the Solà d’Andorra slope (Andorra Principality) before and after the implementation of risk mitigation works, in particular, the construction of protective fences. To calculate the risk level we have (i) identified the potential rockfall release areas, (ii) obtained the volume distribution of the falling rocks, (iii) determined the frequency of the rockfall events, and (iv) performed trajectographic analysis with a 3D numerical model (Eurobloc) that has provided both the expected travel distances and the kinetic energy of the blocks. The risk level at the developed area located at the foot of the rock cliff has been calculated taking into account the nature of the exposed elements and their vulnerability. In the Forat Negre basin, the most dangerous basin of the Solà d’Andorra, the construction of two lines of rockfall protection fences has reduced the annual probability of loss of life for the most exposed person inside the buildings, from 3.8×10−4 to 9.1×10−7 and the societal risk from 1.5×10−2 of annual probability of loss of life to 1.2×10−5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号