首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net sampling to 3000 m depth at Endeavour Ridge in the northeast Pacific in July 1991–1994 shows that medusae in the immediate vicinity of the hydrothermal vent fields often make up a larger proportion of the total zooplankton abundance and biomass from mesopelagic to bathypelagic depths than in the surrounding waters. This was particularly evident in the dominant Trachymedusae, and least evident in the siphonophores. In addition, the large red Scyphomedusa Stygiomedusa gigantea was a major biomass component in the region of the deep (1000–1800 m depth) migrating scattering layers at the vent field, but was not found in any net tows greater than 10 km away from vents. There is no concurrent increase in relative or percent biomass of fish or chaetognaths, which are the other major predators in the community. We hypothesize that predaceous medusae respond opportunistically to the enhanced zooplankton biomass throughout the water column around vents in spring to early summer, in a way that other predators do not.  相似文献   

2.
3.
Studies in epipelagic waters report higher heterotrophic microbial biomass in the productive high latitudes than in the oligotrophic low latitudes; however, biogeographical data are scarce in the deep ocean. To examine the hypothesis that the observed latitudinal differences in heterotrophic microbial biomass in the epipelagic zone also occur at depth, abundance and biomass of heterotrophic prokaryotes, nanoflagellates (HNF), and ciliates were determined at depths of 5–5000 m in the central Pacific between August and September of 2005. Heterotrophic microbial biomass increased from the tropical to the subarctic region over the full water column, with latitudinal differences in prokaryotic biomass increasing from 2.3-fold in the epipelagic zone to 4.4-fold in the bathypelagic zone. However, the latitudinal difference in HNF and ciliate biomass decreased with depth. In the mesopelagic zone, the vertical attenuation rate of prokaryotic abundance, which was calculated as the linear regression slope of log-log plot of abundance versus depth, ranged from –0.55 to –1.26 and was more pronounced (steeper slope) in the lower latitudes. In contrast, the vertical attenuation rate of HNF in the mesopelagic zone (–1.06 to –1.27) did not differ with latitude. In the subarctic, the attenuation rate of HNF was 1.7 times steeper than for prokaryotes. These results suggest the accumulation of prokaryotes in the deep subarctic Pacific, possibly due to low grazing pressure. Although the vertical attenuation rate of ciliates was steepest in the bathypelagic zone, HNF abundance did not further decrease at depths below 1000 m, except for at 2000 m where HNF was lowest across the study area. Ciliate abundance ranged 0.3–0.8 cells l–1 at 4000 m, and were below the detection limit (<0.1 cells l –1) at 5000 m. To our knowledge, this study presents the first data for ciliates below 2000 m.  相似文献   

4.
The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ∼14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ∼700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ∼1800 m, decreasing with depth to ∼2600 m before increasing again to high levels at ∼4700 m.  相似文献   

5.
We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160–250 m), upper slope (250–450 m), intermediate slope (450–800 m), and Derugin Basin (1450–1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats.Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area.As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.  相似文献   

6.
Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above ∼750 m marking the change from shelf species to bathyal species; (2) a zone from ∼750 to 1900 m that corresponds to the upper and mid-bathyal zones taken together; (3) a lower bathyal zone from ∼1900 to 2900 m; (4) a transition zone from ∼2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyal species with very broad distributions. The ∼4100 m boundary marked the lower limit of distribution of many bathyal species. There was a pattern of increasing diversity downslope from ∼500 to 1600 m, followed by a decrease to minimum values at about 2700 m. This drop in diversity was followed by an increase up to maximum values at ∼4100 m and then again, a fall to ∼4900 m (the lower depth limit in this study).  相似文献   

7.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

8.
This study examines the parasite fauna of Bathypterois mediterraneus, the most common fish below 1500 m in Western Mediterranean waters. Samples were obtained during July 2010 from the continental slope of two different areas (off Catalonia and Balearic Islands) in three different bathymetric strata at depths between 1000 and 2200 m. The parasite fauna of B. mediterraneus included a narrow range of species: Steringophorus cf. dorsolineatum, Scolex pleuronectis, Hysterothylacium aduncum, Anisakis sp. larva 3 type II and Sarcotretes sp. Steringophorus cf. dorsolineatum and H. aduncum were the most predominant parasites. H. aduncum showed significant differences in abundance between depths of 2000–2200 m with 1000–1400 m and 1400–2000 m, irrespective of locality, whereas S. cf. dorsolineatum showed significant differences between the two localities at all depths except for 2000–2200 m. We suggest the possible usefulness of these two parasites as geographical indicators for discriminating discrete stocks of B. mediterraneus in Western Mediterranean waters.  相似文献   

9.
The influence of mesoscale physical and trophic variables on deep-sea megafauna, a scale of variation often neglected in deep-sea studies, is crucial for understanding their role in the ecosystem. Drivers of megafaunal assemblage composition and biomass distribution have been investigated in two contrasting areas of the Balearic basin in the NW Mediterranean: on the mainland slope (Catalonian coasts) and on the insular slope (North of Mallorca, Balearic Islands). An experimental bottom trawl survey was carried out during summer 2010, at stations in both sub-areas located between 450 and 2200 m water depth. Environmental data were collected simultaneously: near-bottom physical parameters, and the elemental and isotopic composition of sediments. Initially, data were analysed along the whole depth gradient, and then assemblages from the two areas were compared. Analysis of the trawls showed the existence of one group associated with the upper slope (US=450–690 m), another with the middle slope (MS=1000–1300 m) and a third with the lower slope (LS=1400–2200 m). Also, significant differences in the assemblage composition were found between mainland and insular slopes at MS. Dominance by different species was evident when the two areas were compared by SIMPER analysis. The greatest fish biomass was recorded in both areas at 1000–1300 m, a zone linked to minimum temperature and maximum O2 concentration on the bottom. Near the mainland, fish assemblages were best explained (43% of total variance, DISTLM analysis) by prey availability (gelatinous zooplankton biomass). On the insular slope, trophic webs seemed less complex and were based on vertical input of surface primary production. Decapods, which reached their highest biomass values on the upper slope, were correlated with salinity and temperature in both the areas. However, while hydrographic conditions (temperature and salinity) seemed to be the most important variables over the insular slope, resource availability (gelatinous zooplankton and Calocaris macandreae) predominated and explained 59% of decapod assemblage variation over the mainland slope. Both fish and decapods were linked to net primary production recorded over the mainland 3 months before sampling, while the delay between the input of food from the surface and fish abundance was only 1 month on the insular slope. Our results suggest that trophic relationships over insular slopes probably involve a shorter food chain than over mainland slopes and one that is likely more efficient in terms of energy transfer.  相似文献   

10.
The deep sea has been shown to exhibit strong depth zonation in species composition and abundance. Examination of these patterns can offer ecological insight into how organisms adapt and respond to changing environmental parameters that co-occur with depth. Here we provide the first tropical study on bathymetric zonation and other depth-related trends (size, abundance, and species richness) spanning shelf to abyssal depths of scavenging megafauna. Baited time-lapse free-vehicle cameras were used to examine the deep-sea benthic and demersal scavenging communities of the Hawaiian Islands, an area for which the biology and ecology have remained poorly studied below 2000 m. Twenty-two deployments ranging in depth from 250 to 4783 m yielded 37 taxa attracted to bait, including the first known occurrence of the family Zoarcidae in the Hawaiian Islands. Cluster analysis of Bray–Curtis similarity of species peak abundance (nmax) revealed four main faunal zones (250–500, 1000, 1500–3000, and ?4000 m) with significant separation (ANOSIM, global R=0.907, p=0.001) between designated depth groups. A major faunal break was identified at the 500–1000 m transition where species turnover was greatest, coinciding with the location of the local oxygen minimum zone. Dominance in species assemblage shifted from decapod crustaceans to teleosts moving from shallow to deeper faunal zones. Significant size differences in total length with depth were found for two of the four fish species examined. A logarithmic decline was observed in scavenger relative abundance with depth. Evidence of interaction between scavenging species was also noted between Synaphobranchus affinis and Neolithodes sp. (competition) and Histiobranchus sp. and aristeid shrimp (predation), suggesting that interactions between scavengers could influence indices of abundance generated from baited camera data.  相似文献   

11.
Deep-water corals form unique ecosystems, yet very little is known about factors that regulate their distribution and growth. The abundance and size of two deep-water gorgonian coral species, Paragorgia arborea and Primnoa resedaeformis, and their relationship with depth and substratum cover, were investigated at Northeast Channel, off Nova Scotia, in July 2006. This is the first study to measure abundance and size of these two coral species at depths >500 m in the Canadian Atlantic region. A total of 5 transects between 500 and 1000 m depth were examined using video collected by the remotely operated vehicle ROPOS. Abundance of both species was patchy, but higher at these deeper depths than at <500 m. Abundance generally declined with depth, and was moderately correlated with cover of hard substratum (cobble, boulder, bedrock). These relationships were stronger and less variable for P. resedaeformis than for P. arborea, suggesting that factors such as topographic relief may play an additional role in regulating distributions of P. arborea. Maximum colony height was 125 and 240 cm for P. resedaeformis and P. arborea, respectively, and much greater than recorded for depths <500 m. Overall, colony height and depth relationships were strong for both species, but variable among transects. P. resedaeformis showed a negative relationship with depth, while the opposite was observed for P. arborea, suggesting that the two species are affected differently by factors that vary with depth (e.g. temperature, fishing disturbance). Relationships between colony size and size of attachment stone were stronger for P. arborea, especially for overturned colonies, than for P. resedaeformis, suggesting that availability of suitably coarse substrate may be more important for the long-term persistence of P. arborea colonies.  相似文献   

12.
A novel autonomous free-fall lander vehicle, with a capability down to 6000 m, was deployed off Cape Verde for studies on bioluminescence in the deep sea. The system was equipped with a high-sensitivity Intensified Silicon Intensified Target (ISIT) video camera, a programmable control-recording unit and an acoustic current meter with depth and temperature sensors. The ISIT lander was used in three modes: (1) free falling at 34 m min−1, with the camera looking downwards at a mesh screen, recording impacts of luminescent organisms to obtain a vertical profile down to the abyssal sea floor, sampling at >100 l s−1; (2) rotating, with the lander on the sea floor and the camera orienting to the bottom current using a servo-controlled turntable, impacts of luminescent organisms carried by the bottom current onto a mesh screen mounted 0.5 m in front of the camera were recorded to estimate abundance in the benthic boundary layer; (3) baited, with the camera focused on a bait placed on the sea floor.Profiles recorded abundance of luminescent organisms as 26.7 m−3 at 500–999 m depth, decreasing to 1.6 m−3 at 2000–2499 m and 0.5 m−3 between 2500 m and the sea floor at 4046 m, with no further detectable significant change with depth. Rotator measurements at a 0.5 m height above the sea floor gave a mean abundance of 0.47 m−3 in the benthic boundary layer at 4046 m and of 2.04 m−3 at 3200 m. Thirty five minutes after the bait was placed on the sea floor at 3200 m, bioluminescent fauna apparently arrived at the bait and produced luminescent displays at a rate of 2 min−1. Moving, flashing light sources were observed and luminescent material was released into the bottom current.  相似文献   

13.
We investigated zooplankton distribution in September 2006/2007 at eight stations across Fram Strait in contrasting water masses ranging from cold Polar water to warm Atlantic water. Our main objectives were: (1) to describe the plankton community in the upper 200 m during autumn, and (2) to investigate the importance of small-sized copepods and protozooplankton in an arctic ecosystem when the majority of the large Calanus species had entered diapause. We sampled both with a WP-2 net and Go-Flo bottle and show that small copepods <1 mm are significantly undersampled using a WP-2 net with 90 μm mesh.Small copepods and protozooplankton made a significant contribution both in terms of abundance and total zooplankton biomass at all stations in September, when the large calanoid copepods had left the upper 200 m. The dominating group in the upper 60 m at all stations was Oithona spp. nauplii and their daily estimated grazing potential on the <10 μm phytoplankton ranged from 0.1% to 82% of the standing stock. Both Oithona copepodites and nauplii biomass showed a significantly positive relation with temperature, but not with potential food. Heterotrophic protozooplankton, on the other hand, were most likely bottom-up regulated by the availability of phytoplankton <10 μm. We hypothesise that Oithona nauplii and protozooplankton compete for food and conclude that there was a strong link between the zooplankton community and the microbial food web in Fram Strait.  相似文献   

14.
Fluorescent dissolved organic matter (DOM), a fraction of chromophoric DOM, is known to be produced in the deep ocean and is considered to be bio-refractory. However, the factors controlling fluorescence properties of DOM in the deep ocean are still not well understood. In this study, we determined the fluorescence properties of DOM in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). One protein-like, two humic-like components, and one uncertain component, which might be derived from a fluorometer artifact, were identified by EEM-PARAFAC. Fluorescence intensity levels of the protein-like component were highest in the surface waters, decreased with depth, but did not change systematically in the bathypelagic layer (1000 m - bottom). Fluorescence characteristics of the two humic-like components were similar to those traditionally defined as marine and terrestrial humic-like fluorophores. The fluorescence intensity levels of the two humic-like components were lowest in the surface waters, increased with depth in the mesopelagic layer (200 - 1000 m), and then slightly decreased with depth in the bathypelagic layer. The ratio of the two humic-like components remained in a relatively narrow range in the bathypelagic layer compared to that in the surface layer, suggesting a similar composition of humic-like fluorophores in the bathypelagic layer. In addition, the fluorescence intensities of the two humic-like components were linearly correlated to apparent oxygen utilization (AOU) in the bathypelagic layer, suggesting that both humic-like components are produced in situ as organic matter is oxidized biologically. These findings imply that optical characteristics of humic-like fluorophores once formed might not be altered further biologically or geochemically in the deep ocean. On the other hand, relationships of fluorescence intensities with AOU and Fe(III) solubility were different between the two humic-like components in the mesopelagic layer, suggesting different environmental dynamics and biogeochemical roles for the two humic-like components.  相似文献   

15.
Macrofaunal polychaete communities (>500 µm) in the South Eastern Arabian Sea (SEAS) continental margin (200–1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00′and 14°30′N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10–14°30′N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7–10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l−1, i.e.<6.7 μmol l−1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7–9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.  相似文献   

16.
Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September–02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043–0.47×109 dm−3) and viruses (range 0.68–11×109 dm−3) were correlated (r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5–70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m−2 exceeding that of phytoplankton (0.005–0.2 g C m−2) or viruses (0.02–0.05 g C m−2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0–1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0–1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.  相似文献   

17.
Measurements of the density of deep pelagic bioluminescent zooplankton (BL) were made with the Intensified Silicon Intensifier Target (ISIT) profiler in the Ligurian, Tyrrhenian, Adriatic, Ionian Seas and the Strait of Sicily from ~300 m to near seafloor. Mean BL densities ranged from 2.61 m?3 at 500–1000 m depth in the Adriatic Sea to 0.01 m?3 at 4000–5000 m depth in the E Ionian Sea. We investigated drivers of spatial variation of deep pelagic BL density. Linear regression was applied between surface chlorophyll a (Chl a) concentration and underlying BL density. Chl a values were determined from satellite derived 100 km radius composites (six 10-day means per ISIT deployment, over preceding 60 days). At 500–1000 m depth we found a significant positive relationship between mean BL density and mean Chl a in the period prior to 0–10 days (at 1% level) and prior to 10–40 days (at 5% level). Beyond 40 days no relationship between BL density and Chl a was found at this depth. At depths 1000–1500 m BL density values were low and no significant relationship with Chl a was detected. Generalised additive modelling (GAM) was used to assess the influence of benthic hotspots (seamount; cold water coral mound; mud volcano) on overlying BL density. A reduction in BL density was found downstream of the Palinuro seamount from 300 to 600 m. No effect on BL density in the overlying water column was detected from the presence of cold water corals. Higher BL densities were detected over the W Madonna dello Ionio mud volcano than at other sites sampled in the NW Ionian Sea. We find surface Chl a to be a good predictor of BL density in the mesopelagic zone; below this depth we hypothesise that processes affecting the efficiency of particle export to deep water may exert greater influence on BL density.  相似文献   

18.
The vertical distributions of prokaryote heterotrophic production (3H-leucine incorporation rate) and abundance were investigated in the meso- and bathy-pelagic layers of the Canada Basin, western Arctic Ocean, during September 2009. Prokaryote production and abundance were high in the Pacific-origin water mass located in the upper mesopelagic layer (depth, 100–200 m). Below the halocline layer (depth, 300–3000 m), both the production and abundance decreased with depth, with log–log regression slopes of −1.33 and −0.77, respectively. Depth-integrated production and biomass in the meso- and bathy-pelagic layers was three- to five-fold lower than the corresponding values reported in the subpolar regions, whereas they were close to or lower than the corresponding values in oligotrophic subtropical regions. Prokaryote turnover times were estimated to be 1.1 and 6.1 years for meso- and bathy-pelagic layers, respectively, with the latter being among the longest turnover times reported for oceanic basins. We estimated prokaryote carbon demand in the water column (100–3000 m) to be on the order of 11 mg C m−2 d−1, which largely exceeds (by 38-fold) the sinking particulate organic carbon flux at depths of 120–200 m reported in the literature. This large carbon imbalance may be partly explained by organic carbon delivery by lateral intrusion of the Pacific-origin water mass into the upper mesopelagic layer.  相似文献   

19.
Despite the fact that marine viruses have been increasingly investigated in the last decade, knowledge on virus abundance, biomass and distribution in mesopelagic and bathypelagic waters is limited. We report here the results of a large-spatial-scale study (covering more than 3000 km) on the virioplankton distribution in epi-, meso- and bathypelagic waters in 19 areas of the Mediterranean Sea, from the Alboran Sea and Western Mediterranean, to the Tyrrhenian Sea, Sicily Channel and Ionian Sea. Integrated viral abundance in epipelagic waters was significantly higher than in deep-sea waters (on average, 2.4 vs. 0.5×1012 viruses m−3). However, abundance of viruses in the deep-Mediterranean waters was the highest reported so far for deep seas worldwide (7.0 and 3.1×1011 viruses m−3 in mesopelagic and bathypelagic waters, respectively) and their biomass accounted for 13–18% of total prokaryotic C biomass. The significant relationship between viral abundance and prokaryotic abundance and production in deep waters suggests that also deep-sea viruses are closely dependent on the abundance and metabolism of their hosts. Moreover, virus to prokaryote (and nucleoid-containing cell (NuCC)) abundance ratio increased with increasing depths suggesting that deep waters may represent optimal environments for viral survival or proliferation. Overall, our results indicate that deep waters may represent a significant reservoir of viruses and open new perspectives for future investigations of viral impact on the functioning of meso-bathypelagic ecosystems.  相似文献   

20.
In the Eastern North Atlantic Ocean iron (Fe) speciation was investigated in three size fractions: the dissolvable from unfiltered samples, the dissolved fraction (<0.2 μm) and the fraction smaller than 1000 kDa (<1000 kDa). Fe concentrations were measured by flow injection analysis and the organic Fe complexation by voltammetry. In the research area the water column consisted of North Atlantic Central Water (NACW), below which Mediterranean Overflow Water (MOW) was found with the core between 800 and 1000 m depth. Below 2000 m depth the North Atlantic Deep Water (NADW) proper was recognised. Dissolved Fe and Fe in the <1000 kDa fraction showed a nutrient like profile, depleted at the surface, increasing until 500–1000 m depth below which the concentration remained constant. Fe in unfiltered samples clearly showed the MOW with high concentrations (4 nM) compared to the overlying NACW and the underlying NADW, with 0.9 nM and 2 nM Fe, respectively. By using excess ligand (Excess L) concentrations as parameter we show a potential to bind Fe. The surface mixed layer had the highest excess ligand concentrations in all size fractions due to phytoplankton uptake and possible ligand production. The ratio of Excess L over Fe proved to be a complementary tool in revealing the relative saturation state of the ligands with Fe. In the whole water column, the organic ligands in the larger colloidal fraction (between 0.2 μm and 1000 kDa) were saturated with Fe, whereas those in the smallest fraction (<1000 kDa) were not saturated with Fe, confirming that this fraction was the most reactive one and regulates dissolution and colloid aggregation and scavenging processes. This regulation was remarkably stable with depth since the alpha factor (product of Excess L and K′), expressing the reactivity of the ligands, did not vary and was 1013. Whereas, in the NACW and the MOW, the ligands in the particulate (>0.2 μm) fraction were unsaturated with Fe with respect to the dissolved fraction, thus these waters had a scavenging potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号