首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple model is developed to study the inception of sheet flow in oscillatory flow based on the available experimental data. The inception of sheet flow in oscillatory flow is well defined by the simple model: A/d=KA2ω/ν+B, where A is the semi-excursion of wave orbital motion near the bed, d is the grain size, ω is the angular frequency, ν is the kinematic viscosity of water, and K and B are the coefficients and dependent on sediment properties only. The inception velocity of sheet flow derived from the model is shown to be the function of grain size d, oscillatory period T and specific sediment density s. For a given sediment, the inception velocity is found to increase sharply initially with T and then approach a constant at T>6.0 s. The present model is quite simple and gives good agreement with the available experimental data.  相似文献   

2.
《Ocean Engineering》1999,26(3):277-285
A simple model is developed to study the inception of sheet flow in oscillatory flow based on the available experimental data. The inception of sheet flow in oscillatory flow is well defined by the simple model: A/d=KA2ω/ν+B, where A is the semi-excursion of wave orbital motion near the bed, d is the grain size, ω is the angular frequency, ν is the kinematic viscosity of water, and K and B are the coefficients and dependent on sediment properties only. The inception velocity of sheet flow derived from the model is shown to be the function of grain size d, oscillatory period T and specific sediment density s. For a given sediment, the inception velocity is found to increase sharply initially with T and then approach a constant at T>6.0 s. The present model is quite simple and gives good agreement with the available experimental data.  相似文献   

3.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

4.
A laboratory investigation of wave forces induced by a regular train of waves on a large pipeline resting on the bed and at various clearances from the bed is presented. From considerations of dimensional analysis horizontal and vertical components of wave forces acting on the pipeline are expressed as force coefficients which are shown to be functions mainly of H/2a, gT2/2a, d/a and e/2a. A simple unseparated flow model based on potential flow theory and Morison's equation is presented for evaluating the maximum forces on the pipeline. The experimental results are com3ared with the theoretical results and data from existing literature. Based on the experimental results, hydrodynamic coefficients CM and CL have been evaluated  相似文献   

5.
The wave friction factor is commonly expressed as a function of the horizontal water particle semi-excursion (A wb) at the top of the boundary layer. A wb, in turn, is normally derived from linear wave theory by \fracU\textwbT\textw2p \frac{{{U_{\text{wb}}}{T_{\text{w}}}}}{{2\pi }} , where U wb is the maximum water particle velocity measured at the top of the boundary layer and T w is the wave period. However, it is shown here that A wb determined in this way deviates drastically from its real value under both linear and non-linear waves. Three equations for smooth, transitional and rough boundary conditions, respectively, are proposed to solve this problem, all three being a function of U wb, T w, and δ, the thickness of the boundary layer. Because these variables can be determined theoretically for any bottom slope and water depth using the deepwater wave conditions, there is no need to physically measure them. Although differing substantially from many modern attempts to define the wave friction factor, the results coincide with equations proposed in the 1960s for either smooth or rough boundary conditions. The findings also confirm that the long-held notion of circular water particle motion down to the bottom in deepwater conditions is erroneous, the motion in fact being circular at the surface and elliptical at depth in both deep and shallow water conditions, with only horizontal motion at the top of the boundary layer. The new equations are incorporated in an updated version (WAVECALC II) of the Excel program published earlier in this journal by Le Roux et al. Geo-Mar Lett 30(5): 549–560, (2010).  相似文献   

6.
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

7.
A parametric study was carried out to investigate the hydrodynamics of a cylindrical wave energy absorber. Established methods of hydrodynamic analysis were applied to the case of a damped vertically oriented cylinder pivoted near the sea floor in intermediate depth water. The simple geometry provides a canonical reference for more complex structure shapes and configurations that may be considered for either wave energy conversion or wave energy absorption. The study makes use of the relative velocity Morison equation, with force coefficients derived from radiation and diffraction theory. Viscous effects were accounted for by including a drag term with an empirically derived coefficient, CD. A non-linear first-order formulation was used to calculate the cylinder motion response in regular waves. It was found that the non-linear drag term, which is often neglected in studies on wave energy conversion, has a large effect on performance. Results from the study suggest a set of design criteria based on Keulegan–Carpenter (KC) number, ratio of cylinder radius to water depth (a/h), and ratio of water depth to wavelength (h/L). Respectively, these parameters account for viscous, wave radiation, and water depth effects, and optimal ranges are provided.  相似文献   

8.
The beach profile and sediment transport are very important factors in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study, considering wave height (H0=6.5, 11.5, 16, 20, 23, 26 and 30 cm), wave period (T=1.46 and 2.03 s), beach slope (m=1/10 and 1/15) and mean sediment diameter (d50=0.18, 0.26, 0.33 and 0.40 mm), an experimental investigation of coastal erosion profile (storm profile) was carried out in a wave flume using regular waves, and geometric characteristics of erosion profile were determined by the resultant erosion profile. Dimensional and non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.  相似文献   

9.
Large-scale dune erosion tests to study the influence of wave periods   总被引:1,自引:0,他引:1  
Large-scale physical model tests were performed to quantify the effects of the wave period on dune erosion. Attention was focussed on 2D cross-shore effects in a situation with sandy dunes and extreme water levels and wave conditions. Besides profile measurements, detailed measurements in time and space of water pressure, flow velocities and sediment concentrations were performed in the near near-shore area. It was concluded that a longer wave period leads to a larger dune erosion volume and to a larger landward retreat of the dune face. Tests with double-peaked wave spectra showed that the influence of the spectral shape on dune erosion was best represented by the Tm − 1,0 spectral mean wave period, better than the peak wave period, Tp. The effect of the wave period on dune erosion was implemented in a dune erosion prediction method that estimates erosion volumes during normative storm conditions for the Dutch coast. More details of the measurements and additional analyses of physical processes are described in an accompanying paper by Van Thiel de Vries et al. [Van Thiel de Vries, J.S.M., van Gent, M.R.A., Reniers, A.J.H.M. and Walstra, D.J.R., submitted for publication. Analysis of dune erosion processes in large scale flume experiments, In this volume of Coastal Engineering.].  相似文献   

10.
戴德君  王忠  王伟 《海洋与湖沼》2000,31(6):676-681
孙孕等(1994)提出了外频谱的概念,并推导出外频谱的理论形式,但其控制参量是由内频谱导出的,不便于实际应用,通过对实测海浪数据的分析,得到了控制外频谱的3个和内频谱有关的参量与波浪要素之间的关系,进而将外频谱表示以有效波高和有效波周期作为控制参量的形式,应用实测资料将本文得到的外频谱形式与理论外频谱进行了比较,发现二者符合良好。  相似文献   

11.
《Coastal Engineering》1999,38(3):115-141
Two commonly adopted but fundamentally different approaches for predicting time-averaged suspended-sediment reference concentration (REF) under waves are tested against field measurements and compared with each other. The first model relates REF to the cube of the non-dimensional skin friction, whereas the second model adopts a more complex function of excess skin friction incorporating the empirical constant γ0. The dataset is from the zone of wave shoaling seaward of an open-coast surfzone and includes measurements of waves, currents, suspended sediment and bedforms. Estimates of REF are derived from acoustic backscatter data, and the seabed and suspension process are described from video footage. When waves were energetic, the bed was deformed into large hummocks; during less energetic conditions, the bed was rippled. The time-averaged concentration profiles over the ripples were consistent with settling flux balanced by pure gradient diffusion and a sediment diffusivity that is constant with elevation above the bed. REF in that case is shown to apply at z=0, where z is the elevation above the bed. Over the hummocks, there was a sheet flow at the base of the suspension and REF is shown to apply at z=1 cm. The concentration profiles over the hummocks implied sediment diffusivity that varied linearly with elevation within ∼10 cm of the bed and constant sediment diffusivity above that level. For both rippled and hummocky beds, γ0 derived from the field data was found to be sensitive to the value assumed for critical stress for initiation of sediment motion, which could explain the range of values reported in the literature for γ0. γ0 was also found to vary in a complex way with skin friction, which suggests that the reference-concentration model based on excess skin friction is not correctly formulated. Nevertheless, two functions for γ0 (one applying to rippled beds and the other to hummocky beds) were contrived to make the model fit the data. The model based on non-dimensional skin friction was found to be a good predictor of REF when a correction was made for flow contraction over ripples. The correction was not required for the hummocky bed, where sediment was being entrained in a thin sheet flow layer. The model based on non-dimensional skin friction correctly portrayed the relationship between flow and sediment response without contrivance and therefore should be the favoured approach in predicting reference concentration.  相似文献   

12.
The relation between the intensity of breaking of individual wind-wave crests and parameters of wave size and wave form (e. g., height, period, steepness and skewness) is examined, and the process of change of these parameters is studied in a wind-wave tank (reference wind speed 15 m sec−1, fetch 16 m). Distributions of the wave form parameters are different for breaking and nonbreaking waves. Fully breaking waves seem to hold the relationHT 2, whereH is the individual wave height andT is the period. The condition of breaking is not simply determined by the simple criterion of Stokes' limit. Wave height and steepness of a breaking wave are not always larger than those of a nonbreaking wave. This suggests the existence of an overshooting phenomenon in the breaking wave. The wave form parameters are found to change cyclically in a statistical sense during the wave propagation. The period of the cycle in the present case is estimated to be longer than four wave periods. An intermittency of wave breaking is associated with this cyclic process. Roughly speaking, two or three succeeding breaking-waves sporadically exist among a series of nonbreaking waves along the fetch.  相似文献   

13.
Wave set-up may be significant in determining water levels on coral reefs particularly in microtidal environments and hence is an important factor for the design of reef-top structures and for the stability of reef-top islands. Laboratory experiments have been made on a two dimensional model of an idealised horizontal reef under two different conditions corresponding to a fringing reef (or closed lagoon) situation and a platform reef (or open lagoon) situation. Both wave set-up on the reef-top and the wave-generated flow across the reef were measured and related to wave and tide level conditions.All other factors being the same, wave set-up is greatest at low tide levels whereas wave-generated flow is greater at higher tide levels. The magnitude of the set-up on a platform reef with a wave-generated flow is less than on a fringing reef without any net flow by an amount equal to the velocity head of the flow across the reef. Dimensionless parameters and q/√gHo3 are found to be functions of relative submergence parameters hr/Ho or . For values of ( ) Ho > 1 waves break on the reef-top and radiation stress theory can be used to calculate set-up. For ( )Ho < 0.7 waves break on the reef-face and set-up is determined by broadcrested weir control at the reef-edge. (The symbols are defined as follows: g is gravitational acceleration; hr is still water depth over horizontal reef-top; Ho is offreef wave height (equivalent deep water value); q is discharge per unit length of reef edge; T is wave period and is maximum wave set-up on reef-top.)  相似文献   

14.
《Coastal Engineering》2006,53(5-6):531-542
The inception of the sheet flow regime as well as the effects of the phase lag when the sheet flow regime is established were investigated for oscillatory flows and combined steady and oscillatory flows. A new criterion for the inception of sheet flow is proposed based on around 300 oscillatory flow cases from experiments. This criterion was introduced in the Camenen and Larson [Camenen, B., Larson, M., 2005. A bedload sediment transport formula for the nearshore. Estuarine, Coastal and Shelf Science 63, 249–260.] bed load formula in order to take into account phase-lag effects in the sheet flow regime. The modification of the Camenen and Larson formula significantly improves the overall agreement with data and yields a correct behavior in relation to some of the main governing parameters, which are the median grain size d50, the orbital wave velocity Uw, and the wave period Tw. The calibration of the new formula was based on more than 200 experimental data values on the net sediment transport rate for a full wave cycle. A conceptual model was also proposed to estimate the ratio between sediment transport rate with and without phase lag, (rpl = qs,net / qs,net,ϕ=0). This simple model provides accurate results and may be used together with any quasi-steady model for bed load transport.  相似文献   

15.
Felice Arena  Diego Pavone   《Ocean Modelling》2009,26(3-4):217-225
This paper deals with the long-term modelling of high sea waves. The solution is given for the return period of sea storms during which an arbitrary chosen number of waves, with crest-to-trough heights exceeding a fixed threshold, occur. This return period is derived starting from the Equivalent Triangular Storm (ETS) model, which associates a triangle to each actual storm and thus represents a significant wave height time series at a fixed location by means of a sequence of triangular storms. The short-term statistics is then applied to investigate the occurrence of large crest-to-trough wave heights during a given storm. Finally, by combining the statistical distribution of significant wave heights, the ETS model and the short-term wave statistics, the solution is given for the return periods RN and RN of a sea storm in which N or at least N waves higher than a fixed threshold occur. The values of RN are then calculated, starting from data of two buoys moored in the Pacific Ocean and in the Mediterranean Sea.  相似文献   

16.
Sheet flow and suspension of sand in oscillatory boundary layers   总被引:1,自引:0,他引:1  
after revisionTime-dependent measurements of flow velocities and sediment concentrations were conducted in a large oscillating water tunnel. The measurements were aimed at the flow and sediment dynamics in and above an oscillatory boundary layer in plane bed and sheet-flow conditions. Two asymmetric waves and one sinusoidal wave were imposed using quartz sand with D50 = 0.21 mm. A new electro-resistance probe with a large resolving power was developed for the measurement of the large sediment concentrations in the sheet-flow layer. The measurements revealed a three layer transport system consisting of a pick-up/deposition layer, an upper sheet flow layer and a suspension layer.In the asymmetric wave cases the total net transport was directed “onshore” and was mainly concentrated in the thin sheet flow layer (< 0.5 cm) at the bed. A small net sediment flux was directed “offhore” in the upper suspension layer. The measured flow velocities, sediment concentrations and sedimenl fluxes showed a good qualitative agreement with the results of a (numerical) 1DV boundary-layer flow and transport model. Although the model did not describe all the observed processes in the sheet-flow and suspension layer, the computational results showed a reasonable agreement with measured net transport rates in a wide range of asymmetric wave conditions.  相似文献   

17.
Understanding sediment movement in coastal areas is crucial in planning the stability of coastal structures, the recovery of coastal areas, and the formation of new coast. Accretion or erosion profiles form as a result of sediment movement. The characteristics of these profiles depend on the bed slope, wave conditions, and sediment properties. Here, experimental studies were performed in a wave flume with regular waves, considering different values for the wave height (H0), wave period (T), bed slope (m), and mean sediment diameter (d50). Accretion profiles developed in these experiments, and the geometric parameters of the resulting berms were determined. Teaching–learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms were applied to regression functions of the data from the physical model. Dimensional and dimensionless equations were found for each parameter. These equations were compared to data from the physical model, to determine the best equation for each parameter and to evaluate the performances of the TLBO and ABC algorithms in the estimation of the berm parameters. Compared to the ABC algorithm, the TLBO algorithm provided better accuracy in estimating the berm parameters. Overall, the equations successfully determined the berm parameters.  相似文献   

18.
《Coastal Engineering》2005,52(7):633-645
New experimental laboratory data are presented on swash overtopping and sediment overwash on a truncated beach, approximating the conditions at the crest of a beach berm or inter-tidal ridge-runnel. The experiments provide a measure of the uprush sediment transport rate in the swash zone that is unaffected by the difficulties inherent in deploying instrumentation or sediment trapping techniques at laboratory scale. Overtopping flow volumes are compared with an analytical solution for swash flows as well as a simple numerical model, both of which are restricted to individual swash events. The analytical solution underestimates the overtopping volume by an order of magnitude while the model provides good overall agreement with the data and the reason for this difference is discussed. Modelled flow velocities are input to simple sediment transport formulae appropriate to the swash zone in order to predict the overwash sediment transport rates. Calculations performed with traditional expressions for the wave friction factor tend to underestimate the measured transport. Additional sediment transport calculations using standard total load equations are used to derive an optimum constant wave friction factor of fw = 0.024. This is in good agreement with a broad range of published field and laboratory data. However, the influence of long waves and irregular wave run-up on the overtopping and overwash remains to be assessed. The good agreement between modelled and measured sediment transport rates suggests that the model provides accurate predictions of the uprush sediment transport rates in the swash zone, which has application in predicting the growth and height of beach berms.  相似文献   

19.
Two computations of the KCS model with motions are presented. Self-propulsion in model scale free to sink and trim are studied with the rotating discretized propeller from the Hamburg Model Basin (HSVA) at Fr = 0.26. This case is particularly complex to simulate due to the close proximity of the propeller to the rudder. The second case involves pitch and heave in regular head waves. Computations were performed with CFDShip-Iowa version 4.5, a RANS/DES CFD code designed for ship hydrodynamics. The self-propulsion computations were carried out following the procedure described in Carrica et al. [1], in which a speed controller is used to find the propeller rotational speed that results in the specified ship velocity. The rate of revolutions n, sinkage, trim, thrust and torque coefficients KT, KQ and resistance coefficient CT(SP) are thus obtained. Comparisons between CFD and EFD show that the rate of revolutions n, thrust and torque coefficients KT and KQ have higher prediction accuracies than sinkage and trim. For the simulation of pitch and heave in head waves, the geometry includes KCS hull and rudder under three conditions with two Froude numbers and three wave length and amplitude combinations. 0th and 1st harmonic amplitudes and 1st harmonic phase are computed for total resistance coefficient CT, heave motion z and pitch angle θ. Comparisons between CFD and EFD show that pitch and heave are much better predicted than the resistance. In both cases comparisons with simulations by other authors presented at the G2010 CFD Workshop [2] using different CFD methodologies are included.  相似文献   

20.
双消浪室局部开孔沉箱防波堤具有低反射、结构受力小、适宜较大水深和工程造价低等优点。为明确双消浪室局部开孔沉箱水动力特性的主要影响因素,采用理论分析和物理模型试验相结合的方法,对规则波和不规则波作用下双消浪室局部开孔沉箱防波堤的反射特性进行研究。基于势流理论,建立规则波和不规则波对局部开孔沉箱防波堤作用的三维解析解,采用二次压力损失边界条件考虑沉箱开孔墙对波浪运动的影响,利用周期性边界条件考虑防波堤结构沿长度方向的周期性变化。开展相应规则波和不规则波物理模型试验,验证理论模型的合理性。通过算例分析,研究不同波浪要素和结构参数对防波堤反射特性的影响。研究表明:双消浪室局部开孔沉箱相对消浪室宽度取值为0.08~0.20,沉箱前墙开孔率大于后墙开孔率时,防波堤在较大波浪频率范围内消波效果显著;当前后墙的开孔率相等时,防波堤反射系数的最小值随着开孔率增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号