首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use a climate model (GENESIS) to simulate the changes in climate associated with two scenarios, one from the past and one from the future, with a focus on the Asian continent. The two scenarios are: (1) Early Miocene to Present—a period of uplift of the Himalayan–Tibetan plateau and of decreasing concentration of atmospheric carbon dioxide, and (2) Present to Future Enhanced Greenhouse—a period of increasing concentration of atmospheric carbon dioxide. In the past climate scenario, the combination of uplift and decreased concentration of greenhouse gas causes the model to simulate widespread cooling and, primarily due to the effect of uplift, greatly increased precipitation in southern Asia and decreased precipitation in northern Asia. In the future climate scenario, the increased concentration of atmospheric carbon dioxide causes the model to simulate widespread warming and, by comparison with the past climate scenario, relatively small changes in precipitation; the changes are generally towards increased precipitation, except in parts of northern China. The output of the climate model, along with the changed concentration of atmospheric carbon dioxide, is also used to calculate changes in biome distributions. Owing to the high concentrations of atmospheric carbon dioxide in both the past and future scenarios, relative to present, the simulations of Early Miocene biomes and Future biomes are somewhat similar—and both are very unlike the Present.  相似文献   

2.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

3.
We have analyzed 17 yr (1982–1998) of net carbon flux predictions from a simulation model based on satellite observations of monthly vegetation cover. The NASA-CASA model was driven by vegetation cover properties derived from the Advanced Very High Resolution Radiometer and radiative transfer algorithms that were developed for the Moderate Resolution Imaging Spectroradiometer (MODIS). We report that although the terrestrial ecosystem sink for atmospheric CO2 for the Eurasian region has been fairly consistent at between 0.3 and 0.6 Pg C per year since 1988, high interannual variability in net ecosystem production (NEP) fluxes can be readily identified at locations across the continent. Ten major areas of highest variability in NEP were detected: eastern Europe, the Iberian Peninsula, the Balkan states, Scandinavia, northern and western Russia, eastern Siberia, Mongolia and western China, and central India. Analysis of climate anomalies over this 17-yr time period suggests that variability in precipitation and surface solar irradiance could be associated with trends in carbon sink fluxes within such regions of high NEP variability.  相似文献   

4.
Abrupt climate change revisited   总被引:1,自引:0,他引:1  
Taken together, evidence from east Greenland's mountain moraines and results from atmospheric models appear to provide the answer to a question which has long dogged abrupt climate change research: namely, how were impacts of the Younger Dryas (YD), Dansgaard–Oeschger (D–O) and Heinrich (H) events transmitted so quickly and efficiently throughout the northern hemisphere and tropics? The answer appears to lie in extensive winter sea ice formation which created Siberian-like conditions in the regions surrounding the northern Atlantic. Not only would this account for the ultra cold conditions in the north, but, as suggested by models, it would have pushed the tropical rain belt southward and weakened the monsoons. The requisite abrupt changes in the extent of sea ice cover are of course best explained by the turning on and turning off of the Atlantic's conveyor circulation.  相似文献   

5.
A simulation model based on satellite observations of monthly vegetation cover was used to estimate monthly carbon fluxes in terrestrial ecosystems from 1982 to 1998. The NASA–CASA model was driven by vegetation properties derived from the Advanced Very High Resolution Radiometer (AVHRR) and radiative transfer algorithms that were developed for Moderate Resolution Imaging Spectroradiometer (MODIS). For the terrestrial biosphere, predicted net ecosystem production (NEP) flux for atmospheric CO2 has varied widely between an annual source of −0.9 Pg C per year and a sink of +2.1 Pg C per year. The southern hemisphere tropical zones (SHT, between 0° and 30°S) have a major influence over the predicted global trends in interannual variability of NEP. In contrast, the terrestrial NEP sink for atmospheric CO2 on the North American (NA) continent has been fairly consistent between +0.2 and +0.3 Pg C per year, except during relatively cool annual periods when continental NEP fluxes are predicted to total to nearly zero. The predicted NEP sink for atmospheric CO2 over Eurasia (EA) increased notably in the late 1980s and has been fairly consistent between +0.3 and +0.55 Pg C per year since 1988. High correlations can be detected between the El Niño Southern Oscillation (ENSO) and predicted NEP fluxes on the EA continent and for the SHT latitude zones, whereas NEP fluxes for the North American continent as a whole do not correlate strongly with ENSO events over the same time series since 1982. These observations support the hypothesis that regional climate warming has had notable but relatively small-scale impacts on high latitude ecosystem (tundra and boreal) sinks for atmospheric CO2.  相似文献   

6.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   

7.
Most general circulation models (GCMs) project that climate will be warmer in the 21st century, especially in high latitudes. Climate warming will induce permafrost degradation, which would have great impacts on hydrology, ecosystems and soil biogeochemistry, and could destabilize the foundations of infrastructure. In this study, we simulated transient changes of permafrost distribution in Canada in the 21st century using a process-based permafrost model driven by six GCM-generated climate scenarios. The results show that the area underlain by permafrost in Canada would be reduced by 16.0–19.7% from the 1990s to the 2090s. This estimate was smaller than equilibrium projections because the ground thermal regime was in disequilibrium at the end of the 21st century and permafrost degradation would continue. The simulation shows significant permafrost thaw from the top: On average for the area where permafrost exists in all the years during 1990–2100, active-layer thickness increased by 0.3–0.7 m (or 41–104%), the depth to permafrost table increased by 1.9–5.0 m, and the area with taliks increased exponentially. Permafrost was also thawed from the bottom in southern regions.  相似文献   

8.
We present results of the first middle Miocene climate modelling study using the latest NCAR Community Atmosphere Model (CAM v.3.1) and Community Land Model (CLM v.3.0) coupled to a slab ocean. We examine the sensitivity of the middle Miocene climate to varying concentrations of atmospheric carbon dioxide (180, 355 and 700 ppm). Model simulations are forced with realistic Miocene boundary conditions for continental geometry, topography and vegetation. Global annual mean surface temperature increases by 2.2 °C with each successive doubling of CO2 which is consistent with climate sensitivity of previous paleoclimate studies and estimates for future climate. In addition to growing evidence that tropical sea surface temperatures were higher than suggested by proxy-data, our understanding of middle to high latitude warming mechanisms is still incomplete. We compare our results to the late Miocene study of Steppuhn et al. [Steppuhn, A., Micheels, A., Bruch, A., Uhl, D., Utescher, T., Mosbrugger, V., 2007. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global and Planetary Change, 57, 189–212] to explore the dependence of paleoclimate model sensitivities on different software systems and boundary conditions. Our comparison shows climate sensitivity to be overall quite robust — this is as significant, as it is often unclear to what extent simulation behaviour and outputs are dependent on a particular model implementation and initial/boundary conditions. Some distinct differences in model outputs, such as our reduced latitudinal surface temperature gradient and stronger Asian monsoon system, compared to the late Miocene study of Steppuhn et al. [Steppuhn, A., Micheels, A., Bruch, A., Uhl, D., Utescher, T., Mosbrugger, V., 2007. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global and Planetary Change, 57, 189–212] are shown to be closely linked to the choice of topography, vegetation and ocean heat flux.  相似文献   

9.
The Eurasian Weichselian glaciation is studied with the SICOPOLIS ice-sheet model and UKMO PMIP climate anomaly forcings. A set of sensitivity tests are completed, including runs in cold-ice mode, different positive-degree-day (PDD) factors and modified climatic data-sets. The model set-up with present-day climatology modified by a glacial index brings forth an areally correct Last Glacial Maximum (LGM) extent in the western areas, but the ice-sheet volume is too small compared to reconstructions from rebound rates. Applying modified climate data results in similar extent as indicated by the Quaternary Environment of the Eurasian North (QUEEN) Late Weichselian ice-sheet reconstruction. The simulation results display freshwater fluxes from melting and calving in phase with Heinrich events H3 at 27, H2 at 22, and H1 at 14 ka ago. These peaks correspond to fast flow areas, with main activity at 27 and 22 ka ago in the Nordic Channel area and later in the Bear Island and Storfjorden region. The activity of these areas seems to be shifting from south to north from LGM to the Holocene. The freshwater pulse at 19–18.5 ka could correspond to Dansgaard–Oeschger oscillation, as well as ice volume flux peaks around 18–17 ka ago on the western margin of the ice sheet.  相似文献   

10.
To drive an atmospheric general circulation model (AGCM), land surface boundary conditions like albedo and morphological roughness, which depend on the vegetation type present, have to be prescribed. For the late Quaternary there are some data available, but they are still sparse. Here an artificial neural network approach to assimilate these paleovegetation data is investigated. In contrast to a biome model the relation between climatological parameters and vegetation type is not based on biological knowledge but estimated from the available vegetation data and the AGCM climatology at the corresponding locations. For a test application, a data set for the modern vegetation reduced to the amount of data available for the Holocene climate optimum (about 6000 years B.P.) is used. From this, the neural network is able to reconstruct the complete global vegetation with a kappa value of 0.56. The most pronounced errors occur in Australia and South America in areas corresponding to large data gaps.  相似文献   

11.
The purpose of this study is to perform a high-resolution general circulation model (GCM) experiment to quantify the sensitivity of regional climate to change in vegetation around the Mediterranean basin, corresponding to vegetation change during the Roman Classical Period (RCP), about 2000 years BP. First, an RCP vegetation distribution based on fossil pollen maps and historical records was defined. Second, the RCP vegetation inferred from palynology and other proxies was converted to the 12 vegetation types required by the biosphere model implemented in the GCM. The albedo change due to the change in vegetation significantly alters the atmospheric circulation over northern Africa and the Mediterranean. The consequences of this change involve a northward shift of the ITCZ in the African continent and a coupled circulation between northwestern Africa and the Mediterranean Sea. A large increase of precipitation occurs over the Sahel, the Nile valley and northwestern Africa. A smaller increase of precipitation occurs also over the Iberian Peninsula and the region corresponding to the south of the Caucasus range (Armenia). The increase of precipitation over northern Africa, the Iberian Peninsula and the Armenian region are consistent with the pollen, historical and geographical data. These results suggest that deforestation around the Mediterranean during the last 2000 years contributed to the dryness of the current climate.  相似文献   

12.
A pollen record from the core sediments collected in the northern part of Lake Baikal represents the latest stage of the Taz (Saale) Glaciation, Kazantsevo (Eemian) Interglacial (namely the Last Interglacial), and the earliest stage of the Zyryanka (Weichselian) Glaciation. According to the palaeomagnetic-based age model applied to the core, the Last Interglacial in the Lake Baikal record lasted about 10.6 ky from 128 to 117.4 ky BP, being more or less synchronous with the Marine Isotope Stage 5e. The reconstructed changes in the south Siberian vegetation and climate are summarised as follows: a major spread of shrub alder (Alnus fruticosa) and shrub birches (Betula sect. Nanae/Fruticosae) in the study area was a characteristic feature during the late glacial phase of the Taz Glaciation. Boreal trees e.g. spruce (Picea obovata) and birch (Betula sect. Albae) started to play an important role in the regional vegetation with the onset of the interglacial conditions. Optimal conditions for Abies sibiricaP. obovata taiga development occurred ca. 126.3 ky BP. The maximum spread of birch forest-steppe communities took place at the low altitudes ca. 126.5–125.5 ky BP and Pinus sylvestris started to form forests in the northern Baikal area after ca. 124.4 ky BP. Re-expansion of the steppe communities, as well as shrubby alder and willow communities and the disappearance of forest vegetation occurred at about 117.4 ky BP, suggesting the end of the interglacial succession. The changes in the pollen assemblages recorded in the sediments from northern Baikal point to a certain instability of the interglacial climate. Three phases of climate deterioration have been distinguished: 126–125.5, 121.5–120, and 119.5–119 ky BP. The penultimate cooling signal may be correlated with the cool oscillation recorded in European pollen records. However, such far distant correlation requires more careful investigation.  相似文献   

13.
New paleovegetation and paleoclimatic reconstructions from the Sierra Madre Occidental (SMO) in northwestern Mexico are presented. This work involves climate and biome reconstruction using Plant Functional Types (PFT) assigned to pollen taxa. We used fossil pollen data from four Holocene peat bogs located at different altitudes (1500‑2000 m) at the border region of Sonora and Chihuahua at around 28° N latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.; Ortega-Rosas, C.I., Peñalba, M.C., Guiot, J. Holocene altitudinal shifts in vegetation belts and environmental changes in the Sierra Madre Occidental, Northwestern Mexico. Submitted for publication of Palaeobotany and Palynology). The closest modern pollen data come from pollen analysis across an altitudinal transect from the Sonoran Desert towards the highlands of the temperate SMO at the same latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.). An additional modern pollen dataset of 400 sites across NW Mexico and the SW United States was compiled from different sources (Davis, O.K., 1995. Climate and vegetation pattern in surface samples from arid western U.S.A.: application to Holocene climatic reconstruction. Palynology 19, 95–119, North American Pollen Database, Latin-American Pollen Database, personal data, and different scientific papers). For the biomization method (Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from paleoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185–194), we modified the pollen-PFT and PFT-biomes assignation of Thompson and Anderson (Thompson, R.S., Anderson, K.H., 2000. Biomes of western North America at 18,000; 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography 27, 555–584) for a better representation of the modern vegetation of NW Mexico. The biome reconstruction method was validated with the modern pollen sites and applied to the fossil sites. Our results show that, during the early Holocene, a cool conifer forest extended at least down to 1700 m, while today this biome is present above 2000 m in the Chihuahua state. The Younger Dryas event was recorded in one site with cold and dry conditions. The reconstructed annual temperature for this period was 3°–6 °C colder than today, and annual precipitation was 250 mm lower than at present (900 mm/yr). The middle Holocene after 9200 cal yr BP was marked by a warming trend, reaching temperatures 2 °C warmer than today at 7000 cal yr BP, and by the installation of a warm mixed forest, the present day biome, at 1700 m elevation, while at higher elevations (1900 m) the cool conifer forest was still present. Summer precipitation was 200 mm/yr above the early Holocene values, suggesting that monsoon-like conditions strengthened since 9200 cal yr BP at this region. During the last 4000 yr, the same warm mixed forest was reconstructed below 1700 m and a conifer forest above 1700 m. A great variability of vegetation and climate patterns was recorded for the last 3000 yr particularly at high elevation sites, where warming and cooling trends would be coeval of the Medieval warm period and Little Ice Age, likely related to ENSO variability.  相似文献   

14.
Using a recently developed global vegetation distribution, topography, and shorelines for the Early Eocene in conjunction with the Genesis version 2.0 climate model, we investigate the influences that these new boundary conditions have on global climate. Global mean climate changes little in response to the subtle changes we made; differences in mean annual and seasonal surface temperatures over northern and southern hemispheric land, respectively, are on the order of 0.5°C. In contrast, and perhaps more importantly, continental scale climate exhibits significant responses. Increased peak elevations and topographic detail result in larger amplitude planetary 4 mm/day and decreases by 7–9 mm/day in the proto Himalayan region. Surface temperatures change by up to 18°C as a direct result of elevation modifications. Increased leaf area index (LAI), as a result of altered vegetation distributions, reduces temperatures by up to 6°C. Decreasing the size of the Mississippi embayment decreases inland precipitation by 1–2 mm/day. These climate responses to increased accuracy in boundary conditions indicate that “improved” boundary conditions may play an important role in producing modeled paleoclimates that approach the proxy data more closely.  相似文献   

15.
The microcharcoal content (particles < 180 µm) of overlapping sedimentary sequences from two crater lake basins in central Turkey are used to reconstruct the regional fire history of the East Mediterranean oak–grass parkland zone from the Last Glacial Maximum to the present-day. These results are correlated with stable isotope and pollen data from the same cores in order to assess the changing role of climate, vegetation and human activity in landscape burning. This indicates that climatically-induced variation in biomass availability was the main factor controlling the timing of regional fire activity during the Last Glacial–Interglacial climatic transition, and again during Mid-Holocene times, with fire frequency and magnitude increasing during wetter climatic phases. Spectral analysis of the Holocene part of the record from Eski Acıgöl indicates significant cyclicity with a periodicity of ~ 1500 years that may be linked with large-scale climate forcing. Although proto-agricultural societies were established in this region as early as 10,000 years ago, it is only during the last two to three millennia that the pacing of wildfire cycles appears to have become decoupled from climate and linked instead to human-induced changes in land cover and fuel load availability.  相似文献   

16.
Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of these various forcings will be necessary in order to distinguish between, and to detect, the variety of natural and anthropogenic influences and on climate.  相似文献   

17.
Inverse and direct methods have been used to analyze a large number of borehole temperature logs in order to infer past climatic changes. Results indicate a warming of 1–2°C in eastern and central Canada during the past 150 years. A period of cooling between 500 and 200 years before present, corresponding to the time of the “Little Ice Age”, has also been identified in the same areas. A regional ground temperature history is estimated for eastern and central Canada from the simultaneous inversion of several temperature logs. The inferred temperature changes appear correlated with the concentration of atmospheric carbon dioxide as reported from a Greenland ice core, and agree with existing meteorological and dendrochronological records for the area.  相似文献   

18.
The northern treeline is generally limited by available warmth. However, in recent years, more and more studies have identified drought stress as an additional limiting factor for tree growth in northern boreal forests and at treelines. Three growth responses to warming have been identified: increase in growth, decrease in growth, and nonsignificant correlation of tree growth with climate. Here we investigate the effect of drought stress on radial growth of white spruce at northern treelines along a longitudinal gradient spanning the entire Brooks Range in Alaska. We systematically sampled 687 white spruce at seven treeline sites. Where possible, we sampled three site types at a given site: high-density forest, low-density forest, and floodplain forest. We investigated the relationship of site and site type to tree growth responses. In the western part of our study area, we found very high numbers of trees responding with increase in growth to recent warming; while in the eastern part, trees responding with decrease in growth to recent warming are predominant. Within a given site, more trees reacting positively to warming grow on site types characterized by low tree density. These patterns coincide with precipitation decreases from west to east and local water availability gradients, therefore pointing to drought stress as the controlling factor for the distribution of trees responding with increase or decrease in growth to recent warming. Compared to 20th century climate, we project a 25–50% basal area (BA) increase in the western region for the 21st century due to climate warming as projected by five general circulation models, 4–11% in the central region and decreases (+1 to −11%) in the eastern region. The overall net change in projected 21st century BA increase at each site seems to be controlled by the relative proportion of responder groups. If these are similar, differences in the magnitude of increase versus decrease in growth control BA projections for that site. This study highlights the importance of regional-scale investigations of biosphere–climate interactions, since our results indicate a substantial gain in aboveground biomass as a result of future warming only in the western regions; while in the eastern regions, climate warming will decrease overall wood production and therefore carbon uptake potential.  相似文献   

19.
Today, most land surface process models have prescribed seasonal change of vegetation with regard to the exchange processes between land and the atmosphere. However, in order to consider the real interaction between vegetation and atmosphere and represent it best in a climate model, the vegetation growth process should be included. In other words, “life” should be brought into climate models. In this study, we have coupled the physical and biological components of AVIM (Atmosphere–Vegetation Interaction Model), a land surface model including plant ecophysiological processes, into the IAP/LASG L9 R15 GOALS GCM. To exhibit terrestrial vegetation information, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere, which is 7.5° longitude and 4.5° latitude. The simulated monthly mean surface air temperature and precipitation is close to the observations. The monthly mean Leaf Area Index (LAI) is consistent with the observed data. The global annual mean net primary production (NPP) simulation is also reasonable. The coupled model is stable, providing a good platform for research on two-way interaction between land and atmosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

20.
The late Paleocene to early Eocene was one of the warmest intervals in Earth's history. Superimposed on this long-term warming was an abrupt short-term extreme warm event at or near the Paleocene/Eocene boundary and centered in the higher latitudes. This short-term climate warming was associated with a major benthic foraminiferal extinction and a dramatic 3–4% drop in the ocean's carbon isotopic composition. It has been suggested that the late paleocene/early Eocene global warming was caused by an enhanced greenhouse effect associated with higher levels of atmospheric CO2 relative to present levels. We present carbon isotopic data from the co-existing paleosols organic matter and carbonates from a terrestrial sequence in the Paris Basin, France that contradict the notion that an increase in atmospheric CO2 level was the cause of extreme warming for this time interval. Atmospheric pCO2 estimates for the Late Paleocene/early Eocene estimated from the terrestrial carbon isotopic record spanning the Paleocene/Eocene transition, are indistinguishable from each other and were generally between 300 and 700 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号