首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland.  相似文献   

2.
3.
4.
The Pulang complex is located tectonically at the southern margin of the Yidun–Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U–Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr–Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257 ~ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas.  相似文献   

5.
The Kanggur gold deposit is located in the southern margin of the Central Asia Orogenic Belt and in the western segment of the Kanggur–Huangshan ductile shear belt in Eastern Tianshan, northwestern China. The orebodies of this deposit are hosted in the Lower Carboniferous volcanic rocks of the Aqishan Formation and mainly consist of andesite, dacite and pyroclastic rocks. The SHRIMP zircon U–Pb age data of the andesite indicate that the volcanism in the Kanggur area might have occurred at ca. 339 Ma in the Early Carboniferous, and that the mineralization age of the Kanggur gold deposit was later than the age of volcanic rocks in the area. Geochemically, the andesite rocks of the Aqishan Formation belong to low-tholeiite and calc-alkaline series and display relative depletions in high field strength elements (HFSEs; i.e. Nb, Ta and Ti). The δ18Ow and δDw values vary from − 9.1‰ to + 3.8‰ and − 66.0‰ to − 33.9‰, respectively, indicating that the ore-forming fluids were mixtures of metamorphic and meteoric waters. The δ30Si values of 13 quartz samples range from − 0.3‰ to + 0.1‰ with an average of − 0.15‰, and the δ34S values of 18 sulphide samples range from − 0.9‰ to + 2.2‰ with an average of + 0.54‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 10 sulphide samples range from 18.166 to 18.880, 15.553 to 15.635 and 38.050 to 38.813, respectively, showing similarities to orogenic Pb; these values are consistent with those of the andesite from the Kanggur area, suggesting a common lead source. All of the silicon, sulphur and lead isotopic systems indicate that the ore-forming fluids and materials were mainly derived from the Aqishan Formation, and that the host volcanic rocks of the Aqishan Formation probably played a significant role in the Kanggur gold mineralization. Integrating the data obtained from studies on geology, geochronology, petro-geochemistry and H–O–Si–S–Pb isotope systematics, we suggest that the Kanggur gold deposit is an orogenic-type deposit formed in Eastern Tianshan orogenic belt during the Permian post-collisional tectonism.  相似文献   

6.
The origin of the Greater Himalayan Sequence in the Himalaya and the paleogeographic position of the Lhasa terrane within Gondwanaland remain controversial. In the Eastern Himalayan syntaxis, the basement complexes of the northeastern Indian plate (Namche Barwa Complex) and the South Lhasa terrane (Nyingchi Complex) can be studied to explore these issues. Detrital zircons from the metasedimentary rocks in the Namche Barwa Complex and Nyingchi Complex yield similar U–Pb age spectra, with major age populations of 1.00–1.20 Ga, 1.30–1.45 Ga, 1.50–1.65 Ga and 1.70–1.80 Ga. The maximum depositional ages for their sedimentary protoliths are ~ 1.0 Ga based on the mean ages of the youngest three detrital zircons. Their minimum depositional ages are ~ 477 Ma for the Namche Barwa Complex and ~ 499 Ma for the Nyingchi Complex. Detrital zircons from the Namche Barwa Complex and Nyingchi Complex also display similar trace-element signatures and Hf isotopic composition, indicating that they were derived from common provenance. The trace-element signatures of 1.30–1.45 Ga detrital zircons indicate that the 1.3–1.5 Ga alkalic and mafic rocks belt in the southeastern India is a potential provenance. Most 1.50–1.65 Ga zircons have positive εHf(t) values (+ 1.2 to + 9.0), and most 1.70–1.80 Ga zircons have negative εHf(t) values (− 7.1 to − 1.9), which are compatible with those of the Paleo- to Mesoproterozoic orthogneisses in the Namche Barwa Complex. Provenance analysis indicates that the southern Indian Shield, South Lhasa terrane and probably Eastern Antarctica were the potential detrital sources. Combined with previous studies, our results suggest that: (1) the Namche Barwa Complex is the northeastern extension of the Greater Himalaya Sequence; (2) the metasedimentary rocks in the Namche Barwa Complex represent distal deposits of the northern Indian margin relative to the Lesser Himalaya; (3) the South Lhasa terrane was tectonically linked to northern India before the Cambrian.  相似文献   

7.
ABSTRACT

Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.  相似文献   

8.
《地学前缘(英文版)》2019,10(2):725-751
Geochemical data and Sr–Nd isotopes of the host rocks and magmatic microgranular enclaves (MMEs) collected from the Oligocene Nodoushan Plutonic Complex (NPC) in the central part of the Urumieh–Dokhtar Magmatic Belt (UDMB) were studied in order to better understand the magmatic and geodynamic evolution of the UDMB. New U–Pb zircon ages reveal that the NPC was assembled incrementally over ca. 5 m.y., during two main episodes at 30.52 ± 0.11 Ma and 30.06 ± 0.10 Ma in the early Oligocene (middle Rupelian) for dioritic and granite intrusives, and at 24.994 ± 0.037 Ma and 24.13 ± 0.19 Ma in the late Oligocene (latest Chattian) for granodioritic and diorite porphyry units, respectively. The spherical to ellipsoidal enclaves are composed of diorite to monzodiorite and minor gabbroic diorite (SiO2 = 47.73–57.36 wt.%; Mg# = 42.15–53.04); the host intrusions are mainly granite, granodiorite and diorite porphyry (SiO2 = 56.51–72.35 wt.%; Mg# = 26.29–50.86). All the samples used in this study have similar geochemical features, including enrichment in large ion lithophile elements (LILEs, e.g. Rb, Ba, Sr) and light rare earth elements (LREEs) relative to high field strength elements (HFSEs) and heavy rare earth elements (HREEs). These features, combined with a relative depletion in Nb, Ta, Ti and P, are characteristic of subduction-related magmas. Isotopic data for the host rocks display ISr = 0.705045–0.707959, εNd(t) = −3.23 to +3.80, and the Nd model ages (TDM) vary from 0.58 Ga to 1.37 Ga. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.705513 to 0.707275 and εNd(t) from −1.46 to 4.62. The MMEs have TDM ranging from 0.49 Ga to 1.39 Ga. Geochemical and isotopic similarities between the MMEs and their host rocks demonstrate that the enclaves have mixed origins and were most probably formed by interactions between the lower crust- and mantle-derived magmas. Geochemical data, in combination with geodynamic evidence, suggest that a basic magma was derived from an enriched subcontinental lithospheric mantle (SCLM), presumably triggered by the influx of the hot asthenosphere. This magma then interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on Sr–Nd isotope data indicate that ∼50% to 90% of the lower crust-derived melt and ∼10% to 50% of the mantle-derived mafic magma were involved in the genesis of the early Oligocene magmas. In contrast, ∼45%–65% of the mantle-derived mafic magma were incorporated into the lower crust-derived magma (∼35%–55%) that generated the late Oligocene hybrid granitoid rocks. Early Oligocene granitoid rocks contain a higher proportion of crustal material compared to those that formed in the late Oligocene. It is reasonable to assume that lower crust and mantle interaction processes played a significant role in the genesis of these hybridgranitoid bodies, where melts undergoing fractional crystallization along with minor amounts of crustal assimilation could ascend to shallower crustal levels and generate a variety of rock types ranging from diorite to granite.  相似文献   

9.
In an attempt to elucidate the pre-Variscan evolution history of the various geological units in the Austrian part of the Bohemian Massif, we have analysed zircons from 12 rocks (mainly orthogneisses) by means of SHRIMP, conventional multi-grain and single-grain U–Pb isotope-dilution/mass-spectrometry. Two of the orthogneisses studied represent Cadomian metagranitoids that formed at ca. 610 Ma (Spitz gneiss) and ca. 580 Ma (Bittesch gneiss). A metagranite from the Thaya batholith also gave a Cadomian zircon age (567±5 Ma). Traces of Neoproterozoic zircon growth were also identified in several other samples, underlining the great importance of the Cadomian orogeny for the evolution of crust in the southern Bohemian Massif. However, important magmatic events also occurred in the Early Palaeozoic. A sample of the Gföhl gneiss was recognised as a 488±6 Ma-old granite. A tonalite gneiss from the realm of the South Bohemian batholith was dated at 456±3 Ma, and zircon cores in a Moldanubian metagranitic granulite gave similar ages of 440–450 Ma. This Ordovician phase of magmatism in the Moldanubian unit is tentatively interpreted as related to the rifting and drift of South Armorica from the African Gondwana margin. The oldest inherited zircons, in a migmatite from the South Bohemian batholith, yielded an age of ca. 2.6 Ga, and many zircon cores in both Moravian and Moldanubian meta-granitoid rocks gave ages around 2.0 Ga. However, rocks from the Moldanubian unit show a striking lack of zircon ages between 1.8 and 1.0 Ga, reflecting an ancestry from Armorica and the North African part of Gondwana, respectively, whereas the Moravian Bittesch gneiss contains many inherited zircons with Mesoproterozoic and Early Palaeoproterozoic ages of ca. 1.2, 1.5 and 1.65–1.8 Ga, indicating a derivation from the South American part of Gondwana.  相似文献   

10.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   

11.
Chronology of Neoproterozoic volcanosedimentary successions remains controversial for many regions of the Arabian–Nubian Shield, including the Dokhan Volcanics of NE Egypt. New U–Pb zircon SHRIMP ages have been obtained for 10 silica-rich ignimbrites and two subvolcanic dacitic bodies, mapped as Dokhan Volcanics, from the North Eastern Desert of Egypt. Crystallization ages range between 592 ± 5 and 630 ± 6 Ma (Early Ediacaran). Apparently, the late consolidation of the Arabian–Nubian Shield was accompanied by the evolution of isolated volcanic centres and basin systems which developed during a period of approx. 40 Ma, independently in space and time and probably under changing tectonic regimes. The obtained age data together with other previously published reliable ages for Dokhan Volcanics suggest two main pulses of volcanic activity: 630–623 Ma and 618–592 Ma. Five samples contain inherited zircons, with ages of 669, 715–746, 847 and 1530 Ma, supporting models that North Eastern Desert crust is mainly juvenile Neoproterozoic crust.  相似文献   

12.
The southern segment of the Eastern Ghats Mobile Belt (EGMB) in India was an active convergent margin during Mesoproterozoic, prior to the final collision in Neoproterozoic during the assembly of the Rodinia supercontinent. Here we present mineralogical, whole-rock geochemical, zircon U–Pb and Hf isotopic data from a granitoid suite in the Bopudi region in the EGGB. The granitoid complex comprises quartz monzodiorite with small stocks of rapakivi granites. The monzodiorite, locally porphyritic, contains K-feldspar megacrysts, plagioclase, quartz, biotite and ortho-amphibole. The presence of mantled ovoid megacrysts of alkali feldspar embaying early-formed quartz, and the presence of two generations of the phenocrystic phases in the rapakivi granites indicate features typical of rapakivi granites. The K-feldspar phenocrysts in the rapakivi granite are mantled by medium-grained aggregates of microcline (Ab7 Or93), which is compositionally equivalent to the rim of Kfs phenocryst and Pl (An23–24 Ab75). The geochemistry of both the granitoids shows arc-like features for REE and trace elements. LA-ICP-MS zircon analyses reveal 207Pb/206Pb ages of 1582 (MSWD = 1.4) for the rapakivi granite 1605 ± 3 Ma (MSWD = 3.9) for the monzodiorite. The zircons from all the granitoid samples show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. The zircons from the monzodiorite have a limited variation in initial 176Hf/177Hf ratios of 0.28171–0.28188, with εHf(t) values of −2.2 to +2.8. Correspondingly, their two-stage Hf isotope model ages (TDM2) ranging from 2.15 to 2.47 Ga probably suggest a mixed source for the magma involving melting of the Paleoproterozoic basement and injection of subduction-related juvenile magmas. The prominent Mesoproterozoic ages of these granitoids suggest subduction-related arc magmatism in a convergent margin setting associated with the amalgamation of the Columbia-derived fragments within the Neoproterozoic Rodinia assembly.  相似文献   

13.
The Meso-Cenozoic geodynamic evolution of the eastern Pontides orogenic belt provides a key to evaluate the volcanogenic massive sulfide (VMS) deposits associated with convergent margin tectonics in a Cordilleran-type orogenic belt. Here we present new geological, geochemical and zircon U–Pb geochronological data, and attempt to characterize the metallogeny through a comprehensive overview of the important VMS mineralizations in the belt. The VMS deposits in the northern part of the eastern Pontides orogenic belt occur in two different stratigraphic horizons consisting mainly of felsic volcanic rocks within the late Cretaceous sequence. SHRIMP zircon U–Pb analyses from ore-bearing dacites yield weighted mean 206Pb/238U ages ranging between 91.1 ± 1.3 and 82.6 ± 1 Ma. The felsic rocks of first and second horizons reveal geochemical characteristics of subduction-related calc-alkaline and shoshonitic magmas, respectively, in continental arcs and represent the immature and mature stages of a late Cretaceous magmatic arc. The nature of the late Cretaceous magmatism in the northern part of the eastern Pontides orogenic belt and the various lithological associations including volcaniclastics, mudstones and sedimentary facies indicate a rift-related environment where dacitic volcanism was predominant. The eastern Pontides VMS deposits are located within the caldera-like depressions and are closely associated with dome-like structures of felsic magmas, with their distribution controlled by fracture systems. Based on a detailed analyses of the geological, geophysical and geodynamic information, we propose that the VMS deposits were generated either in intra arc or near arc region of the eastern Pontides orogenic belt during the southward subduction of the Tethys oceanic lithosphere.  相似文献   

14.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

15.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

16.
Liu  Han-Lun  Han  Yi  Wang  Ke-Yong  Li  Wen  Li  Jian  Cai  Wen-Yan  Fu  Li-Juan 《Arabian Journal of Geosciences》2018,11(24):1-13
Arabian Journal of Geosciences - Soil toxic metal pollution is one of the most prominent environmental problems in the rapid industrialization of societies because of the considerable harm caused...  相似文献   

17.
In the northern extension of the Famatina and the southern Puna (NW Argentina) prominent rhyolitic volcanic rocks traditionally referred to as Ordovician are exposed, resting on metamorphic basement and covered by thick Late Paleozoic siliciclastic successions. We report new U–Pb SHRIMP ages from these rhyolites that show them to be of Mississippian (348–342 Ma) age, thus identifying a previously unknown volcanic event in this portion of western Gondwana. Whole-rock geochemistry and Sr–Nd isotopic analyses suggest a crustal source for these rocks but with a juvenile input (εNd(t) between ? 2.91 and ? 0.3, and TDM values between 1.09 and 1.1 Ga). This is different from the Early Paleozoic magmatism of western Argentina where crustal recycling took place without any involvement of mantle material. The Carboniferous magmatism is compatible with an extensional environment developed along the Terra Australis accretionary orogen as a result of tectonic switching processes. These rhyolites may be related to the coeval Mississippian A-type granites exposed to the east, in the Sierras Pampeanas, confirming the regional character of this magmatism.  相似文献   

18.
19.
Late-stage Pan-African granitoids, including monzogranite, syenogranite and alkali granite, were collected from four separate localities in Sinai. They were selected to represent both the calc-alkaline and alkaline suites that have been viewed as forming separate magmatic episodes in the Eastern Desert of Egypt, with the transition to alkali granite at ~ 610 Ma taken to mark the onset of crustal extension. Although intrusive relations were observed in the field, the emplacement ages of the granitoids cannot be distinguished within analytical uncertainty and they all formed within a restricted time span from 579 to 594 Ma. This indicates that the two suites are coeval and that some calc-alkaline rocks were also likely generated during the late extensional phase. These ages are identical to those recently obtained from similar rocks in the North-Eastern Desert, confirming that Sinai is the northern extension of the Eastern Desert Pan-African terrane of Egypt. Rare inherited zircons with ages of ~ 1790 and ~ 740 Ma are present in syenogranite from northeastern Sinai and indicate that older material is present within the basement. A few zircons record younger ages and, although some may reflect later disturbance of the main zircon population, those with ages of ~ 570 and 535 Ma probably reflect thermal events associated with the extensive emplacement of mafic and felsic dykes in both northeastern and southern Sinai.  相似文献   

20.
The widely distributed high-grade gneisses in the East Kunlun Orogenic Belt (EKOB) are keys to understand the Precambrian tectonic evolution of the Northern Tibetan Plateau. In this study, new LA-ICP-MS zircon U–Pb ages from paragneiss and schist of the Proterozoic Jinshuikou Group and quartzite of the Proterozoic Binggou Group are reported in an attempt to evaluate the Neoproterozoic and Paleozoic tectono-thermal events of the EKOB. These geochronologic data can be classified into 4 groups: Group 1 ages ranging from 2243 Ma to 3701 Ma are represented by inherited zircons from protolith and confirm the existence of Eoarchean to Paleoproterozoic continental nucleus in the source region of the Jinshuikou Group. Group 2 ranging from 928 Ma to 1849 Ma yields lower intercept ages of 0.9–1.0 Ga which represent the Neoproterozoic tectono-thermal event. This event, similar to that of the northern margin of Qaidam, might be a response to the assembly of Rodinia. Group 3 ranges from Neoproterozoic to early Paleozoic with lower intercept ages which are identical to the weighted mean ages of Group 4. These two age groups confirm the tectono-thermal event related to Paleozoic oceanic subduction. Moreover, based on the youngest age of 2.2 Ga in Group 1 and the upper intercept age of 1.8 Ga in Group 2, the depositional timing of the Jinshuikou and Binggou groups can be defined as Paleoproterozoic and Mesoproterozoic, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号