首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了揭示鄂尔多斯盆地北部杭锦旗断裂带在晚石炭世—中三叠世逆冲断层生长的位移模式和位移—长度关系,本文通过地震剖面解释、地层回剥分析和断层古位移测算来厘定古断层的末端位置,明确断裂生长连接历史,并结合幂律关系,探究了断层生长模式以及断裂带岩性组合、运动学、反转和断层系统内在特征等方面的影响。研究表明,杭锦旗断裂带的构造演化受基底断裂的分段性制约。其北东走向的分段(泊尔江海子断裂东段)形成较早;在垂向上,断裂中部的位移大,向两端递减;在平面上,断裂末端与东西走向的分段(泊尔江海子断裂西段)叠覆,导致局部位移增大,最终发生硬连接。东西走向的三眼井断裂形成于晚石炭世,先后经历了断层分段、横向扩展和连接的演化阶段。乌兰吉林庙断裂作为调节带断裂,其活动相对较弱且局部发生反转。根据断层位移—长度剖面的几何形态和断层演化阶段分析,可将杭锦旗断裂带的逆冲阶段的位移模式分为4种类型:①近对称的三角状或椭圆状,代表独立断层;②左右极不对称的锯齿状或双峰状,代表断层之间发生软连接作用;③不规则波状,反映多条小型断层的连接作用;④异常尖峰状,代表大型断裂后期位移的调整。杭锦旗断裂带的D_(max)/L数据集与全球其他地区比较,要低一个数量级,可能与断裂带的后期反转有关。最后,针对杭锦旗断裂带在不同时期的构造演化和D_(max)/L变化特征,提出了断裂带逆冲阶段演化的路径模式。  相似文献   

2.
对传统的根据断层两盘相对运动方向的形态分类提出补充意见,它们应该包括:(1)正断层;(2)逆断层;(3)平移断层;(4)水平断层;(5)垂直断层;(6)开口断层。同时提出原生断层与借生断层,真正断层与视正断层等新概念及其分类。  相似文献   

3.
正断层的分段构造型式及其扩展演化机制的核心内容可以归结为正断层的中继构造模式。本文从正断层的断块变形、断裂扩展以及断裂力学特征等角度,总结了正断层中继构造的扩展演化机制。正断层的断块变形是指分段断层位移转换形成的中继斜坡,可分为内倾和外倾两种斜坡类型,位移曲线揭示了中继带变形的特征。正断层的断裂扩展有多种扩展方式,可分为断层内、断层间和断层系扩展,且可以形成不同型式的中继构造。正断层中继构造是在三维空间扩展的,将断层边缘的断裂力学性质和断层面的放射状扩展方向相结合,可完整描述中继构造的空间分布规律。正断层形成于伸展构造环境,是控制油气和金属矿产资源的重要构造型式,结合SEDEX型矿床同生断层和岩体侵位控制的正断层控矿研究实例,初步讨论了正断层中继构造扩展演化在SEDEX型矿床和正断层相关控矿断裂成矿构造研究中的作用。  相似文献   

4.
本文研究了在迪费德地区东南沿海出露的上古生界中的小型正断层的几种位移分布模式,简要对比并探讨了断层的生长机制,以及几种可以影响断层位移分布特征的因素;指出断层生长过程中的衔接、不规则的断层位移等值线的存在、研究剖面的方位以及岩性的变化是导致断层位移分布特征多样化和复杂化的主要因素。  相似文献   

5.
针对断层对周围岩石地层影响的问题,本文提出了一种有限元算法计算模拟该断层对周围地层产生的应力场和位移场。首先,根据最大主应力、中间主应力和最小主应力来研究正断层、逆断层以及走滑断层的应力状态;其次,基于弹性力学相关理论研究应力—应变关系,采用线性四面体单元有限元分析方法进行算法实现;最后,在考虑到断层两侧岩体的物理性质(弹性模量和泊松比)、断层几何形态以及边界条件等情况下,应用有限元法模拟正断层、逆断层以及走滑断层在层状岩体中产生的应力场和位移场。以红透山铜矿区F8断层为例,通过地质勘探获得的资料判别该断层性质及其周围地层属性,使用本文构建的有限元算法模拟了该断层对周围地层产生的应力场和位移场。  相似文献   

6.
为了明确正断层差异生长演化特征,以及断层相关圈闭成因与分布规律,本文以苏北盆地高邮凹陷内的汉留断层为例,通过断层垂直断距-距离(T-X)曲线和垂直断距-埋深(T-Z)曲线对苏北盆地高邮凹陷汉留断层运动学进行分析。得到汉留断层自W向E由Fh1、Fh2和Fh3等3个断层段组成,呈左阶斜列分布,各断层段形成时期与生长演化特征不同,表现在运动学上为相互独立的4个断层段。戴南组时期,Fh1段和Fh3段东部(Fh3b段)最先形成;三垛组时期,Fh1段存在新生的断层核与下部戴南组时期形成的断层段最初在垂向上是分离的,随着上下断层段的传播最终发生垂向连接,Fh3b段继承性活动,同时形成Fh2段和Fh3段西部(Fh3a)段。各个断层段相互作用并沿走向发生几何连接或者形成重叠带,最终形成了Fh1、Fh2和Fh3等3个断层段。断层在沿走向平面分段生长过程中,在其分段连接部位或重叠处可以形成背斜构造;同时在断层垂向分段生长过程中由于围岩流变学特征差异也可形成背斜构造,这2种不同类型的断层相关背斜构造均可构成油气富集的有利场所。  相似文献   

7.
高邮凹陷深凹带生长断层研究对深入了解该区的构造演化和油气成藏具有重要意义。本项研究在高精度三维地震资料解释基础上,结合生长断层的位移-长度关系和不同时期的断层落差,揭示了高邮凹陷深凹带东部的边界断层和次级断层的生长特征,并结合构造应力场数值模拟探讨了断层生长的主控因素。结果表明,深凹带真2边界断层在始新世戴南期由六个生长中心发育而成,始新世三垛期互相连接形成四个亚段。真2边界断层的生长过程表现为始新世戴南期各断层亚段长度快速增加和始新世三垛期断层位移的持续增大及各断层亚段的连接。真2边界断层生长过程中,断层走向和断面形态受到伸展边界断层真1断层的控制,断层各亚段连接处的结构受断层相互作用影响。深凹带内次级断层呈NEE走向段和近EW走向段交替出现的锯齿形,始新世戴南期生长时具有多个位于NEE走向段生长中心。次级断层的生长受控于古新世和始新世两期的应力场变化,体现为古新世NNW-SSE向伸展下形成NEE走向的薄弱面,在始新世近南北向伸展下NEE走向的薄弱面首先形成断层并被后期近东西向断层连接。  相似文献   

8.
东濮凹陷伸展连锁断层系统及其演化作用   总被引:2,自引:0,他引:2  
东濮凹陷NNE向的主干基底断层向深部延伸与深层的拆离滑脱断层衔接在一起,与诱导出的调节断层以不同的方式连接,构成东濮凹陷的伸展连锁断层系统。东濮凹陷不同区段的连锁断层形态表现出不同的几何学和运动学特征。北区兰聊主断层面表现为相对较缓的平面式形态,伸展连锁断层系统总体上为多米诺式半地堑系。中区伸展连锁断层系统总体上表现为大型铲式正断层上盘的一个不对称的地堑。南区兰聊主断层面表现为坡坪式形态,断陷结构相对复杂。东濮凹陷伸展连锁断层系统的演化大体分为4期,不同区带伸展连锁断层系统演化模式不同,对古近系沉积和石油地质条件有较大的影响。  相似文献   

9.
断层错动不仅可以引起地震灾害,而且带来的地层永久性变形,对结构物特别是线性构造物,如地下管线,隧道等,造成很大影响,因此,研究断层破坏在上覆土层中传播规律是十分必要的。本文依据正断层砂箱模型试验,对断层在砂土中传播模式,断层在地表的露头位置,断层垂直位移与土体厚度关系等内容进行了分析,并认为:(1)砂土中正断层破裂面不唯一,出现分叉; (2)传至地表所需的断层垂直位移与倾角无关; (3)正断层传播形成三角剪切带,其宽度随断层倾角减小而增大。  相似文献   

10.
正断层的阶区构造及生长机制:以狼山山前断层带为例   总被引:2,自引:0,他引:2  
正断层带在生长过程中内部发育有阶区构造,阶区在正断层的相互作用、连接过程中起重要控制作用,同时阶区还影响地表径流和沉积盆地的发展、流体的运移和圈闭的形成。位于内蒙古河套断陷西缘的狼山山前断裂是晚新生代以来持续活动的大型正断层系统,断层带内部发育有不同类型的阶区构造。识别出了两种类型阶区的连接方式,一种是两条平行断层之间的斜坡从"软连接"到"硬连接"的演化过程;另一种是楔状阶区通过一条断层向另一条断层扩展的方式连接产生。基岩中的先存构造要素控制并影响山前正断层的展布方位及阶区的形态:基底内部NNE向糜棱面理控制山前断层带的走向,早期向SE倾斜的逆冲断层面被正断层局部利用。沿断层倾向方向,山前正断层逐渐向盆地方向扩展,最新活动的断层位于盆地边缘甚至盆地内部;沿断层走向方向,狼山山前正断层逐渐向南西侧扩展。  相似文献   

11.
The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830.The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.  相似文献   

12.
Three dimensional seismic-reflection data from the western Niger Delta were used to investigate the segmentation and linkage of a syn-sedimentary normal fault array and to estimate the influence of a pre-existing normal fault on the geometry and growth of younger faults. The nucleation, growth and linkage of a regional (seaward-dipping) deltaic fault system were analyzed on reflectivity time-/horizon slices and vertical seismic sections. In the deep subsurface, a master fault that consists of two segments (northwestern, NW, and southeastern, SE) grew through time into a single fault by lateral tip propagation reaching a final length of about 15 km. After attaining this length, displacement along the fault system developed non-uniformly through time. The analysis of the hanging-wall sediments of the deep-seated master fault shows two different processes of vertical linkage above the NW and SE segment. The SE segment links vertically to several younger faults contemporaneously with displacement accumulation on the master fault; in contrast, fault linkage above the NW segment occurred only after an interval of master-fault inactivity connecting the deep-seated structure upwards to a single syn-sedimentary normal fault. The observed differences in fault development suggest that although multi-segment deltaic faults form single fault systems after segment linkage, individual pre-linkage characteristics can be preserved, supporting a possibly diverse upward growth and connection to younger faults in the overburden. The geological interpretations presented highlight the influence of large deep-rooted structures on the development, location and geometry of shallow deltaic faults, documenting the influence of an older structural grain on delta tectonics.  相似文献   

13.
The Halten Terrace, offshore mid-Norway, is underlain by a Triassic evaporitic package that is rheologically weak, and led to decoupling of fault systems during Middle Jurassic to Early Cretaceous rifting. We use 2D and 3D reflection seismic data, constrained by wells, from the southern Bremstein Fault Complex of the Halten Terrace to map faults and key stratigraphic horizons, and analyse throw variations along faults, allowing us to constrain patterns of fault segmentation and linkage within the complex. The Bremstein Fault Complex has an overall tilted monoclinal geometry with localised fault systems at base salt level associated with overlying, highly distributed systems of normal faults. Vertical strain partitioning across the evaporite package means that sub-evaporite and supra-evaporite fault populations acted as semi-independent fault systems. Supra-evaporite faults are partly gravity-driven, and controlled by sub-evaporite faulting and consequent tilting of the evaporitic package. This behaviour leads to a wide variety of possible vertical linkage patterns of faults across the evaporite package. A greater variety of lateral segment linkage patterns occurs in evaporite-detached normal fault systems than in normal fault systems developed in the absence of evaporite units. Segment boundary styles can also be modified by migration of evaporite. Some segment boundaries are associated with a footwall anticline and hanging-wall syncline, in contrast to the footwall synclines and hanging-wall anticlines widely described in studies of normal fault systems.  相似文献   

14.
A detailed field study of 39 centimetre- to metre-scale relay ramps from two outcrops was performed to investigate the development of a linkage criterion for segmented normal faults. We analysed the displacement distribution and the geometry of fault arrays containing three types of relay ramp: open, linked, and fully breached, in order to identify which parameters are relevant to fault linkage, and to establish a linkage criterion. Each relay ramp geometry has a specific graphical field on a relay displacementseparation diagram. The field including all the linked geometries (initiation of linkage) separates open and fully breached relay ramps and is interpreted as a value of relay displacement to separation ratio for which faults link during their overlap. A ‘linkage threshold’, in each studied fault system, is defined as the best-fit linear trend of linked relays. We discuss the scaling and the variability of the linkage criterion using published datasets from a wide variety of settings and scales. The observed linkage threshold is linear, with a slope value varying less than one order of magnitude. This suggests that linking relay ramps have self-similar geometries from centimetre- to kilometre-scale and that normal fault linkage is governed by similar fault interaction across a broad range of scales. The linkage criterion, which can be an effective tool to estimate relay ramp geometry at depth or at the earth surface, could therefore be used to improve investigations in determining fluid entrapment or in the evaluation of potential surface of seismic ruptures.  相似文献   

15.
《Geodinamica Acta》2013,26(6):375-387
Information from surface and subsurface geology (boreholes and seismic reflection lines) are used to depict the geometry of the extensional structures (low-angle normal faults and related Tuscan Nappe megaboudins) affecting the Mt. Amiata geothermal area and developed during the early stage of the extensional tectonics which affected the inner Northern Apennines and Tyrrhenian Sea from the Early-Middle Miocene. Normal faulting involved the thickened middle-upper crust after the collisional stage and, in the Mt. Amiata region, took place over relatively short periods (5-7 Ma) characterised by rapid extensional strain rates. Normal faults showing articulated geometry (flat-ramp-flat) characterised by subhorizontal detachments (flats) and synthetic ramps, caused widespread megaboudinage mainly in the sedimentary tectonic units and particularly in the Tuscan Nappe. Evaporites occurring at the base of the Tuscan Nappe, the deepest sedimentary tectonic unit of the Northern Apennines, controlled the geometry of the faults, and rift-raft tectonics may be the style of this first extensional phase. Three Tuscan Nappe extensional horses (megaboudins) have been recognised in the subsurface of the Mt. Amiata area. They are characterised, in map view, by elliptical shapes and show a mean NNW-SSE lengthening. They are delimited at the base and at the top by east-dipping flats, while their western and eastern margins coincide with east-dipping ramps. On the whole, considering their geometrical features, these megaboudins correspond to extensional horses belonging to an asymmetrical east-dipping extensional duplex system.

Rollover anticlines deformed the western ramp of the megaboudins and rotated the uppermost flat as well as all the structures previously developed, which became steeply-dipping to the west.  相似文献   

16.
Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same σ1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend.  相似文献   

17.
D.C.P. Peacock   《Tectonophysics》1993,220(1-4):13-21
The displacement-distance (dx) method can be modified to study the geometry and development of contractional kink bands by dividing displacements into cartesian component vectors. Kink bands are idealised as having constant layer lengths, enabling simple trigonometry to be used to determine the displacement of one wall of the kink band relative to the other wall.

In a consideration of several applications of the dx method for kink bands, it is shown that displacement is transferred between conjugate and overstepping kink bands in a similar way to displacement transfer between conjugate and overstepping faults and extension fractures. The several different models of kink band formation are shown to each have different displacement characteristics. The dx method can also be used to study the geometry and evolution of folds related to thrust-propagation and ramps, which are often modelled as having kink band geometries. For instance, the dx method can be used to show how fault-tip and fault-bend folds cause or accommodate thrust displacement variations, and to estimate displacement rates from the amounts of deformation in different syn-thrust sedimentary layers.  相似文献   


18.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   

19.
低角度正断层的形成模式   总被引:2,自引:0,他引:2  
低角度正断层的形成机制是大陆伸展构造研究中的热点问题之一。关于其形成机制及其与其几何学的关系争论很大。至目前为止,人们根据北美西部及其它地区的变质核杂岩构造研究提出了许多有关低角度正断层的形成模。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号