首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

2.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

3.
207Pb/206Pb single-grain zircon, 40Ar/39Ar single-grain hornblende and biotite, and 40Ar/39Ar bulk-sample muscovite and biotite ages from the Nelshoogte trondhjemite pluton located in eastern Transvaal, South Africa, show that this granitoid had a protracted thermal history spanning 3213±4  Ma to about 3000  Ma. Whole-rock 40Ar/39Ar ages from cross-cutting dolerite dykes indicate that these were intruded at about 1900  Ma. There is no evidence of this or other, later events significantly affecting the argon systematics of the minerals from the pluton dated by the 40Ar/39Ar method.
  The pluton has a well-defined palaeomagnetic pole which is dated at 3179±18 (2 σ ) Ma by 40Ar/39Ar dating of hornblende. This pole (18°N, 310°E, A 95=9°) yields a palaeolatitude of 0°, significantly different from other Archaean poles from the Kaapvaal Craton. The palaeolatitude difference implies that there was significant apparent polar wander during the Archaean. A second, overprinting magnetization seen in the pluton is also seen in the lower-Proterozoic dolerite dykes, and is consistent with other lower-Proterozoic (2150–1950  Ma) poles for southern Africa.  相似文献   

4.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

5.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

6.
Summary. From nine Upper Cretaceous—Lower Tertiary (85 ± 5–66 ± 5 Ma) volcanic hills in Central Argentina (33°S, 65°W), 26 hand samples were collected yielding a palaeomagnetic pole at 45°E 70°s ( A 95 = 12.1°; k = 13.6; N = 12) after AC cleaning. Three sites show normal and nine reversed polarity. This pole is close to the pole for the late Cretaceous (69 Ma) Andacolo Series.  相似文献   

7.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

8.
Greenish sandstones in the Early Triassic Nogam Formation of the Ryeongnam Block, Korean Peninsula were collected at 23 sites for palaeomagnetic study. A high-temperature magnetization component with unblocking temperatures of 670–690 °C was isolated from seven sites and yielded a positive fold test at the 95 per cent confidence level. The high-temperature component is interpreted to be of primary origin because the folding age is Middle Triassic. The Early Triassic palaeomagnetic direction for the Ryeongnam Block after tilt correction is D =347.1°, I =23.8° ( α 95=5.5°). The palaeomagnetic pole (62.5°N, 336.8°E, A 95 = 4.7°) shows good agreement with the coeval pole for the North China Block, suggesting that the Ryeongnam Block has been part of the North China Block at least since Early Triassic times. A tectonic history of the Korean Peninsula includes obduction of the eastern part of the South China Block onto the central part of the Korean Peninsula in the Permian, with the Ryeongnam Block geographically isolated from the main part of the North China Block. Collision of the North and South China blocks commenced initially at the Korean Peninsula, and suturing of the two blocks progressed westwards.  相似文献   

9.
Summary. The Cordova gabbro of southern Ontario intrudes 1300 Myr old volcanic rocks of the Hastings Lowlands in the Grenville Structural Province. Three distinct vector magnetizations (A, B and C) have been isolated, using a combination of stable endpoints, subtracted vectors from orthogonal vector plots and converging remagnetization circles. The A magnetization, with mean direction D = 294° I =– 55.5° ( k = 42, α95= 5.5°, N = 18 sites), is a high coercivity, high blocking temperature remanence recorded by 49 samples. The B magnetization was isolated in 33 samples and has a mean direction D = 305.5° I =– 1.5° ( k = 24, α95, N = 11 sites). B has lower coercivities and blocking temperatures than A where the two are superimposed. The A and B palaeopoles, 151°E, 10.5°S ( dp = 6°, dm = 8°) and 165.5°E, 24°N ( dp = 5°, dm = 9.5°), fall on the Grenville Track around 900 and 820 Ma respectively. The A and B magnetizations thus date from uplift and cooling following the Grenvillian orogeny. The third magnetization, the C component, has been isolated in 23 samples. Its mean direction is D = 180° I = 27.5° ( k = 18, α95= 10.5°, N = 12 sites). The C is a low coercivity, low blocking temperature overprint of A and B. Its palaeopole, 102°E, 31°N ( dp = 6.5°, dm = 12°), is unlike post-1300 Precambrian poles for cratonic North America but matches Silurian and late Ordovician poles. 40Ar/39Ar plateau ages of 446 and 447 Ma determined by Lopez-Martinez and York for plagioclases from one of the Cordova samples confirm this age assignment. The C magnetization therefore records a previously unrecognized mild thermal or hydrothermal event that occurred in Palaeozoic time, long after the Grenvillian orogeny.  相似文献   

10.
A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000 km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U–Pb dating of primary zircon, is 1769.1 ± 2.5 Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D  = 36°, I  = − 5°, k  = 63, α 95 = 4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp  = 2°, dm  = 4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800 Ma  相似文献   

11.
Summary Nine basic dykes were sampled near Angmagssalik, east Greenland. Specimens have been treated by alternating field demagnetization in 11 steps up to 3000 (peak) oersted (300 ml). The 'cleaned' direction at all sites is recognized after treatment at 150 oersted. All specimens are reversely magnetized. The mean of the site mean directions has declination = 182°.0, inclination =−66°.9, it = 45, α95= 7°.7. This direction yields a palaeomagnetic pole (reversed) at 73°.4N, 139°.5E ( dp = 10°.7, dm = 12°.9) which is near, but significantly different from, that derived from lower Tertiary rocks in Greenland, namely 63°.2N, 184°.6E ( A 95= 4°.5). K-Ar ages of the nine dykes, based upon whole-rock and mineral separates, range from mid-Tertiary to Cambrian. It is impossible to reconcile these ages with the palaeomagnetic results. The palaeomagnetic evidence, supported by geological inference, suggests that all nine dykes are members of the east Greenland lower Tertiary dyke swarm, designated THOL1, of probable age c. 52 Ma.
The difference between the poles given above can be explained by supposing that the sampling area has tipped about a horizontal axis directed along 013°/193°, the angle of rotation being 13° (± 11°) anti-clockwise, when the axis is viewed along 013°. This local effect could have been due to block faulting when the north-east Atlantic started to open, or may be attributed to upwarping of the coast due to the weight of the ice-cap inland.  相似文献   

12.
Continental red sandstone and siltstone rocks of the Dewey Lake (Quartermaster) Formation at Maroon Cliffs, near Carlsbad, New Mexico, are characterized by two components of magnetization with partially overlapping laboratory unblocking temperature spectra. Both magnetizations display high coercivities (>100 mT), probably residing in haematite. A north-directed magnetization with steep positive inclination unblocks between 100 and 650 °C, isolating a predominantly northwest-directed magnetization, with shallow inclination, of near uniform normal polarity and maximum unblocking temperatures of 680 °C.
We collected samples from 24 palaeomagnetic sites (i.e. individual beds) from a ~60 m thick section of flat-lying strata disconformably overlying carbonate and evaporite rocks of the Rustler Formation. The upper member of the Rustler Formation contains a Late Permian (early Changxingian) marine invertebrate and conodont fauna. Of the sampled sites, four yield only steep magnetizations, interpreted to be recent overprints. Eight sites did not yield well-grouped site means and were excluded from the final calculations. The formation mean (dec = 337.7°, inc = 9.2°; k = 31.6, α 95 = 7.8°, N = 12 sites) defines a palaeomagnetic pole located at 55.2°N, 117.5°E, in good agreement with other Late Permian North American cratonic poles.
Correlation of the short polarity sequence of this section of Dewey Lake strata is unambiguous. Compared with the polarity stratigraphy of marine sections in Asia, and supported by isotopic age determinations on a widespread bentonite bed in Dewey Lake strata in west Texas (approximately 251 Ma) and fossil data for the underlying Rustler Formation, the magnetostratigraphy is consistent with deposition of the Dewey Lake Formation during the latest Changxingian (Late Permian) stage.  相似文献   

13.
40Ar/39Ar whole-rock and alkali feldspar ages demonstrate that dioritic to monzonitic dykes from Bøverbru and Lunner belong to the youngest recorded magmatic activity in the Oslo Rift region, southeast Norway. These dykes represent the terminal phase of rift and magmatic activity in the Oslo Graben, at the dawn of the Triassic (246–238 Ma).
  The Bøverbru and Lunner dyke ages are statistically concordant. However, the palaeomagnetic signature of the Bøverbru dyke is complex, and directions from the margins and the interior of the dyke differ in polarity. Therefore, the new Early Triassic palaeomagnetic pole for Baltica (Eurasia) is exclusively based on the less complex Lunner dykes and contacts (palaeomagnetic pole: latitude=52.9°N, longitude=164.4°E, dp / dm =4.5 ° /7.3°). The early Triassic palaeomagnetic pole [mean age: 243±5 Ma (2 σ )] is slightly different from the Upper Carboniferous–Permian (294–274 Ma) and Kiaman-aged poles from the Oslo Rift.  相似文献   

14.
A palaeomagnetic study of the Elgee Formation red siltstones and shales in the Palaeoproterozoic Kimberley Basin of northwestern Australia has been carried out. All seven sampling sites revealed an extremely stable magnetic remanence carried by haematite. The age of the formation is confined by precise SHRIMP U–Pb ages of early diagenetic xenotime from rocks both above and below it to be 1704 + 7/−14 Ma, but this may represent a minimum age. The youngest detrital zircon grains in the underlying formation provide a maximum age of 1786 ± 14 Ma for the formation. The extreme stability of the remanence, the dissimilarity of the remanent direction from expected younger palaeomagnetic directions, and the lack of regional overprint in the 1790 ± 4 Ma Hart Dolerite just north of the study region support a primary origin for the remanence. A marginally positive fold test also supports a primary origin. The mean direction of D = 92.2°, I = 14.9°, α 95 = 6.4° gives a palaeopole at 4.4°S, 210.0°E with dp = 3.3°, dm = 6.5°. This pole, a previously reported palaeopole from the Hart Dolerite and ca. 1700 Ma overprint poles from the Pilbara Craton all agree with palaeopoles of similar ages from the McArthur Basin of northern Australia. Palaeomagnetic results thus suggest that the North and West Australian cratons were possibly joined together by approximately 1.7 Ga.  相似文献   

15.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   

16.
Summary. Piper suggested that the Lewisian has rotated 30° anticlockwise since magnetization, whereas the opposite appears more likely. The main magnetization in the Lewisian recognized by Piper and Beckmann was imposed upon cooling after the Laxfordian metamorphism at about 1750 (± 50) Ma. The palaeomagnetic pole corresponding to this magnetization is at 37.6° N, 273.2° E ( dp = 3.7°, dm = 5.2°).
In Greenland, palaeomagnetic poles similar to each other, with a mean pole at 21.6° N, 280.1° E ( K = 52, A 95= 9.4°), have been determined from five widely separated regions in central West Greenland and from Angmags-salik in East Greenland. The magnetization observed in all these regions was established upon cooling after the Nagssugtoqidian metamorphism, again at about 1750 (± 50) Ma.
The Laxfordian and Nagssugtoqidian metamorphisms were equivalent. It is therefore assumed that the two palaeomagnetic poles quoted above were originally identical. Their present difference can be explained by clockwise rotation of north-west Scotland about a local rotation pole since the Lewisian became magnetized, in addition to opening of the Atlantic assuming conventional reconstructions:
(1) assuming the reconstruction of Bullard, Everett & Smith, the local rotation proposed is 39.5° (± 18.1°) about a pole of rotation at 60.3° N, 354.5° E, or
(2) assuming the reconstruction of Le Pichon, Sibuet & Francheteau, the local rotation is 28.0° (±17.7°) about a pole of rotation at 54.1° N, 354.6° E.
These proposals of local clockwise rotation of north-west Scotland accord with that of Storetvedt based on palaeomagnetic results from Devonian rocks on the north-west side of the Great Glen Fault.  相似文献   

17.
Summary. Stable components of magnetization have been isolated in 15 lava flows (mean K-Ar age 123 ± 4 Myr) from the alkaline sequence outcropping at El Salto-Almafuerte, Province of Cordoba, Argentina. Magnetic and geologic stratigraphy, as well as K-Ar ages indicate that this sequence was probably extruded in the Lower Cretaceous during the first volcanic cycle of the Sierra de los Cóndores Group (Vulcanitas Cerro Colorado Formation).
The palaeomagnetic pole-position for El Salto-Almafuerte lava flows, computed from the mean of 15 virtual geomagnetic poles and denoted SAK7, is: 25° E, 72° S ( k = 35, α95= 6.5°); it is fairly close to other Lower Cretaceous palaeomagnetic poles for South America. The elongated distribution of Cretaceous palaeomagnetic poles suggest recurrent drift for South America in early Cretaceous time.
The palaeomagnetic and radiometric data for the igneous rocks from El Salto-Almafuerte support the magnetic reversal time-scale for the early Cretaceous suggested by oceanic magnetic lineations.  相似文献   

18.
Summary. Palaeomagnetic investigations are reported from 24 sites in the Proterozoic Zig-Zag Dal Basalt Formation and 12 sites in the Midsominersø Dolerites of eastern North Greenland. The Zig-Zag Dal Basalt is a typical tholeiitic flood basalt sequence, and dolerite intrusions in the underlying sandstones are thought to be genetically related to the basalts.
After a detailed AF demagnetization programme 19 sites in the basalts and 10 sites in the dolerites reveal one stable component of magnetization, probably of TRM and/or CRM origin residing in small single domain titano-magnetite grains. The degree of anisotropy has not affected the direction of the remanent magnetization. The maximum axis of the anisotropy ellipsoid is parallel to the flow direction of the magma, whereas the minimum axis is perpendicular to the flow plane.
Only one polarity of the geomagnetic field was found. The mean palaeomagnetic pole positions for the two rock types are not significantly different (basalt: 12.2°S, 62.8°E with A 95= 3.8°; dolerites: 6.9°S, 62.0°E with A 95 = 5.1°). After correction for Phanerozoic drift of Greenland the two mean poles compare closely to a relevant North American APW-curve for 1250–1350 Ma, in good agreement with Rb-Sr isochron ages of 1250 Ma obtained for the intrusives. The palaeogeographical position of Greenland was near equator with the major geographical axis orientated E-W.  相似文献   

19.
We present new palaeomagnetic and isotopic data from the southern Victoria Land region of the Transantarctic Mountains in East Antarctica that constrain the palaeogeographic position of this region during the Late Cambrian and Early Ordovician. A new pole has been determined from a dioritic intrusion at Killer Ridge (40Ar/39Ar biotite age of 499 ± 3 Ma) and hornblende diorite dykes at Mt. Loke (21°E, 7°S, A 95 = 8°, N = 6 VGPs). The new Killer Ridge/Mt. Loke pole is indistinguishable from Gondwana Late Cambrian and Early Ordovician poles. Previously reported palaeomagnetic poles from southern Victoria Land have new isotopic age constraints that place them in the Late Cambrian rather than the Early Ordovician. Based upon the new palaeomagnetic and isotopic data, new Gondwana Late Cambrian and Early Ordovician mean poles have been calculated.  相似文献   

20.
Palaeomagnetic data for the Cretaceous Pirgua Subgroup from 14 different time units of basalts and red beds exposed in the north-western part of Argentina (25° 45' S 65° 50' W) are given.
After cleaning all the units show normally polarized magnetic remanence and yield a palaeomagnetic pole at 222° E 85° S ( d Φ= 7°, d χ= 10°).
The palaeomagnetic poles for the Pirgua Subgroup (Early to Late Cretaceous, 114–77 Myr), for the Vulcanitas Cerro Rumipalla Formation (Early Cretaceous,<118 Myr, Valencio & Vilas) and for the Poços de Caldas Alkaline Complex (Late Cretaceous, 75 Myr, Opdyke & McDonald) form a 'time-group' reflecting a quasi-static interval (mean pole position, 220° E 85° S, α95= 6°) and define a westward polar wander in Early Cretaceous time for South America.
Comparison of the positions of the Cretaceous palaeomagnetic poles for South America with those for Africa suggests that the separation of South America and Africa occurred in late Early Cretaceous time, after the effusion of the Serra Geral basalts.
The K-Ar ages of basalts of the Pirgua Subgroup (114 ± 5; 98 ± 1 and 77 ± 1 Myr) fix points of reference for three periods of normal polarity within the Cretaceous palaeomagnetic polarity column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号