首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   


2.
K-Ar Dating of Fault Gouges from the Red River Fault Zone of Vietnam   总被引:1,自引:0,他引:1  
Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.  相似文献   

3.
In the Pulur complex, NE Turkey, a heterogeneous rock sequence ranging from quartz-rich mesocratic gneisses to silica- and alkali-deficient, Fe-, Mg- and Al-rich melanocratic rocks is characterized by granulite-facies assemblages involving garnet, cordierite, sillimanite, ilmenite, ±spinel, ±plagioclase, ±quartz, ±biotite, ±corundum, rutile and monazite. Textural evidence for partial melting in the aluminous granulites, particularly leucosomes, is largely absent or strongly obliterated by a late-stage hydrothermal overprint. However, inclusion relations, high peak PT conditions, the refractory modes, bulk and biotite compositions of the melanocratic rocks strongly support a model of partial melting. The melt was almost completely removed from the melanocratic rocks and crystallised within the adjacent mesocratic gneisses which are silica-rich, bear evidence of former feldspar and show a large range in major element concentrations as well as a negative correlation of most elements with SiO2. Peak conditions are estimated to be ≥800 °C and 0.7–0.8 GPa. Subsequent near-isothermal decompression to 0.4–0.5 GPa at 800–730 °C is suggested by the formation of cordierite coronas and cordierite–spinel symplectites around garnet and in the matrix. Sm–Nd, Rb–Sr and 40Ar/39Ar isotope data indicate peak conditions at 330 Ma and cooling below 300 °C at 310 Ma.  相似文献   

4.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


5.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

6.
There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of −28.6‰ to −22.3‰ and the carbon concentrations of 0.70–4.98 wt.% CO2 despite a large variation in δ18O from −4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric–hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO2 in the UHP metamorphic fluid. The 13C-poor CO2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism.

Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of −4.1‰ to −1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U–Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724–768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie–Sulu orogen. Therefore, the meteoric–hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated with the Rodinia supercontinental breakup and the snowball Earth event. It is thus deduced that the igneous protolith of the granitic orthogneiss and some eclogites would intrude into the older sequences composing the sedimentary protoliths of the biotite paragneiss and some eclogites along the northern margin of the Yangtze plate at mid-Neoproterozoic, and drove local meteoric–hydrothermal circulation systems in which both 13C- and 18O-depleted fluid interacted with the protoliths of these UHP rocks now exposed in the Dabie terrane.  相似文献   


7.
Because of late metamorphic and tectonic overprints, the reconstruction of prograde parts of PT paths is often difficult. In the SW Variscan French Massif Central, the Thiviers-Payzac Unit (TPU) is the uppermost allochthon emplaced above underlying units. The TPU experienced a Barrovian metamorphism coeval with a top-to-the-NW ductile shearing (D2 event) in Early Carboniferous times (ca. 360–350 Ma). The tectonic setting of the D2 event, compression or synconvergence extension, remains unclear. Using the THERMOCALC software and the model system MnNCKFMASH, the peak PT conditions are estimated from garnet rims and matrix minerals and the prograde evolution is deduced from garnet core compositions. The combination of these two approaches demonstrates that the TPU experienced pressure and temperature increases before reaching peak conditions at 6.6–9.0 +/− 1.2 kbar and 615–655 +/− 35 °C. This kind of PT path shows that the regional D2 event corresponds to crustal thickening.  相似文献   

8.
The mid-Proterozoic Isortoq dike swarm in the Gardar Province, South Greenland, comprises a variety of alkaline rocks ranging from gabbroic to syenitic in composition. Major magmatic mineral phases are olivine, clinopyroxene, Fe–Ti oxides, amphibole, plagioclase and alkali feldspar. Quartz occurs in some samples as a late magmatic phase. Liquidus temperatures of olivine-bearing samples range between 1120 and 1145 °C and solidus temperatures are 850–930 °C. Calculated silica activities are highly variable between 0.53 and unity. Oxygen fugacities vary from −3 to +1 log units relative to the fayalite–magnetite–quartz buffer.

The rocks have MgO contents <6 wt.% with Mg# between 53 and 17. Primitive mantle-normalized trace element patterns show a relative enrichment of LIL elements with Ba peaks and Nb troughs. Clinopyroxenes show a general enrichment in REE relative to chondritic values with variable slightly positive to prominent negative Eu anomalies. Two of the dikes were dated with Sm–Nd three-point isochrons at 1190±44 and 1187±87 Ma, respectively. Initial 87Sr/86Sr ratios of mafic mineral separates range from 0.70289 to 0.70432 and initial Nd values vary from +0.3 to −10.7. Whole-rock initial 187Os/188Os ratios are highly variable including very radiogenic values of up to 7.967. δ18Ov-smow values of separated clinopyroxene and amphibole range from +5.2‰ to +6.2‰ and fall within the range of typical mantle-derived rocks, although mixing with a lower crustal component is permitted by the data. Using energy-constrained assimilation-fractional crystallization (EC-AFC) modeling equations, the Sr–Nd isotope data of the more radiogenic samples can successfully be modeled by addition of up to 10% lower crustal granulite-facies Archean gneisses as contaminants. The Os isotopic data also suggest the involvement of old radiogenic crust. In accordance with seismic data, we conclude that a wedge of Archean crust extends from West Greenland further to the south below the present erosion level.  相似文献   


9.
The migmatites from Punta Sirenella (NE Sardinia) are layered rocks containing 3–5 vol.% of centimeter-sized stromatic leucosomes which are mainly trondhjemitic and only rarely granitic in composition. They underwent three deformation phases, from D1 to D3. The D1 deformation shows a top to the NW shear component followed by a top to the NE/SE component along the XZ plane of the S2 schistosity. Migmatization started early, during the compressional and crustal thickening stage of Variscan orogeny and was still in progress during the following extensional stage of unroofing and exhumation.

The trondhjemitic leucosomes, mainly consisting of quartz, plagioclase, biotite ± garnet ± kyanite ± fibrolite, retrograde muscovite and rare K-feldspar, are locally bordered by millimeter-sized biotite-rich melanosomes. The rare granitic leucosomes differ from trondhjemitic ones only in the increase in modal content of K-feldspar, up to 25%. Partial melting started in the kyanite field at about 700–720 °C and 0.8–0.9 GPa, and was followed by re-equilibration at 650–670 °C and 0.4–0.6 GPa, producing fibrolite–biotite intergrowth and coarse-grained muscovite.

The leucosomes have higher SiO2, CaO, Na2O, Sr and lower Al2O3, Fe2O3, MgO, TiO2, K2O, P2O5, Rb, Ba, Cr, V, Zr, Nb, Zn and REE content with respect to proximal hosts and pelitic metagreywackes. Sporadic anomalous high content of calcium and ferromagnesian elements in some leucosomes is due to entrainment of significant amounts of restitic plagioclase, biotite and accessory phases. The rare granitic leucosomes reveal peritectic K-feldspar produced by muscovite-dehydration melting. Most leucosomes show low REE content, moderately fractionated REE patterns and marked positive Eu anomaly. Proximal hosts and pelitic metagraywackes are characterized by higher REE content, more fractionated REE patterns and slightly negative Eu anomaly.

The trondhjemitic leucosomes were generated by H2O-fluxed melting at 700 °C of a greywacke to pelitic–greywacke metasedimentary source-rock. The disequilibrium melting process is the most reliable melting model for Punta Sirenella leucosomes.  相似文献   


10.
Re–Os dating of molybdenite from small deposits is used to define crustal domains exhibiting ductile versus brittle behaviour during gravitational collapse of the Sveconorwegian orogen in SW Scandinavia. A 1019 ± 3 Ma planar quartz vein defines a minimum age for brittle behaviour in central Telemark. In Rogaland–Vest Agder, molybdenite associated with deformed quartz and pegmatite veins formed between 982 ± 3 and 947 ± 3 Ma in the amphibolite-facies domain (three deposits) and between 953 ± 3 and 931 ± 3 Ma west of the clinopyroxene-in isograd (two deposits) in the vicinity of the 0.93–0.92 Ga Rogaland anorthosite complex. The data constrain the last increment of ductile deformation to be younger than 0.95 and 0.93 Ga in these two metamorphic zones, respectively. Molybdenite is the product of an equilibrium between biotite, oxide and sulfide minerals and a fluid or hydrated melt phase, after the peak of 1.03–0.97 Ga regional metamorphism. Molybdenite precipitation is locally episodic. A model for gravitational collapse of the Sveconorwegian orogen controlled by lithospheric extension after 0.97 Ga is proposed. In the west of the orogen, the Rogaland–Vest Agder sector is interpreted as a large shallow gneiss dome, formed slowly in two stages in a warm and structurally weak crust. The first stage at 0.96–0.93 Ga was associated with intrusion of the post-collisional hornblende–biotite granite suite. The second stage at 0.93–0.92 Ga, restricted to the southwesternmost area, was associated with intrusion of the anorthosite–mangerite–charnockite suite. Most of the central part of the orogen was already situated in the brittle upper crust well before 0.97 Ga, and did not undergo significant exhumation during collapse. In the east of the orogen, situated against the colder cratonic foreland, exhumation of high-grade rocks of the Eastern Segment occurred between 0.97 and 0.95 Ga, and included preservation of high-pressure rocks but no plutonism.  相似文献   

11.
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (PT) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde PT path with peak PT conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were  800 and  900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea.  相似文献   

12.
The Curaçá terrane is part of the Itabuna–Salvador–Curaçá (I–S–C) Paleoproterozoic orogen in the São Francisco craton, northeastern Brazil, and comprises supracrustal rocks, gneisses of their probable basement, amphibolites, and mafic-ultramafic Cu-bearing bodies (including the Caraíba Cu-Mine), all affected by D1-D3 deformation events associated to M1-M3 metamorphism under high-T granulite and amphibolite facies, and assisted by G1-G3 tonalitic-granodioritic-granitic intrusions. U–Pb and Sm–Nd Thermal Ionization Mass Spectrometry (TIMS) isotopic data from amphibolite, tonalite, and granite, sampled in a well-known outcrop, indicate partial reset and heterogeneous modification of the original isotopic systems, attributable to deformation and metamorphism. The ages obtained from these systems agree with each other, and also with other previously published U–Pb data, and imply that 2.6 Ga is the crystallization age of the protolith of the amphibolite. Together with key structural relationships, they also indicate a 2.08–2.05 Ga interval for M3 metamorphism, and make even a less precise age (2.2–2.3 Ga) acceptable, as it suggests contamination in the amphibolite with material in a syn-D2 tonalite crystallized 2248 ± 36 Ma ago. The new data demonstrate the existence of Neoarchean fragments of both oceanic and continental crusts and constrain the Archean-Paleoproterozoic development of the Curaçá belt, the I–S–C orogen, and the São Francisco craton.  相似文献   

13.
Left-lateral motion along the Ailao Shan–Red River (ASRR) Shear Zone has been widely advocated to be the result of the collision between the Indian and Eurasian plates and to account for sea-floor spreading in the South China Sea. Our new 40Ar/39Ar data on the south-easternmost outcrop of the Day Nui Con Voi metamorphic massif, northern Vietnam, suggest that the exhumation of metamorphic massif by shearing along the ASRR zone began ∼27 Ma and lasted until ∼22 Ma. A perfect correlation between location and cooling path for the samples along the shear zone suggests that the transtensional deformation may have propagated northwestward at a rate of ∼6 cm y−1. Such a good correlation also indicates that the onset of the left-lateral movement of the shear zone may have occurred later than ∼27.5 Ma. This conclusion is consistent with our previous interpretation that collision-induced southeastward extrusion of Indochina along the ASRR Shear Zone postdates the opening of the South China Sea, and that extrusion tectonics in SE China may not be responsible for the opening of the South China Sea.  相似文献   

14.
The Central Zone of the Limpopo Belt (South Africa) underwent high-grade metamorphism at 2.7–2.5 and 2.03 Ga. Quartz-rich, garnet-, cordierite-, biotite- and orthoamphibole-bearing, feldspar-free gneisses from the western Central Zone reached granulite-facies conditions (800 °C at 8–10 kbar) followed by decompression. Garnet from one such sample shows significant zonation in trace elements but little zonation in major elements. Zoning patterns suggest that the early prograde breakdown of REE-rich accessory phases contributed to the garnet trace element budget. Monazite from the sample yields a SHRIMP weighted mean 207Pb–206Pb age of 2028 ± 3 Ma, indistinguishable from a SHRIMP zircon age of 2022 ± 11 Ma previously measured on metamorphic overgrowths on 2.69 Ga igneous zircon cores. New zircon and monazite formed before, or at, the metamorphic peak, and occur as inclusions in garnet. Monazite appears to have formed through the breakdown of early allanite ± xenotime ± apatite. Trace element zoning patterns in garnet and the age of accessory phases are most consistent with a single tectonometamorphic event at 2.03 Ga.

The plagioclase and K-feldspar-free composition of the garnet–cordierite–orthoamphibole gneisses requires open system processes such as intense hydrothermal alteration of protoliths or advanced chemical weathering. In the studied sample, the 2.69 Ga igneous zircons show a prominent negative Eu anomaly, suggesting equilibrium with plagioclase, or plagioclase fractionation in the precursor magma. In contrast, the other minerals either show small negative (2.03 Ga monazite), no (2.02 Ga zircon and garnet) or positive Eu anomalies (orthoamphibole). This suggests that the unusual bulk compositions of these rocks were set in after 2.69 Ga but before the peak of the 2.03 Ga event, most probably while the protoliths resided at shallow or surficial crustal levels.  相似文献   


15.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.

Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism.  相似文献   


16.
Mary L. Leech  W. G. Ernst 《Lithos》2000,52(1-4):235-252
The Maksyutov Complex consists of three fault-bounded lithologic units: a quartzofeldspathic gneiss containing mafic eclogite boudins (Unit #1); a metasedimentary blueschist-facies (Yumaguzinskaya) unit; and a meta-ophiolitic mélange (Unit #2). The geologic history of the high- to ultrahigh-pressure (HP–UHP) assembly of the Maksyutov Complex is complicated by several stages of prolonged retrograde metamorphism and deformation. The Sakmara River exposes all three units near the former village of Karayanova. A structural/petrologic cross-section through the area yields new quantitative data for the complex and, regionally, for the south Urals. Analysis of the Karayanova area has identified the major structures. Regional folding within the complex is parallel to the dominant foliation trending northeast–southwest. Stereonet data show that, during exhumation, this large-scale folding was refolded about axes trending southeast. Unit #1 and the Yumaguzinskaya are tectonically and petrologically distinct units juxtaposed by west-vergent thrusting and recrystallization within the same subduction zone. A shear zone developed later between Unit #2 and the Unit #1+Yumaguzinskaya tectonic package accompanying exhumation. Field relations and petrofabric demonstrate that blueschist-facies recrystallization overprinted an earlier eclogite-facies metamorphism. Thermobarometric measurements yield PT values of 594–637°C, 1.5–1.7 GPa for eclogite, but these conditions may reflect annealing during the early-stage exhumation at 375 Ma. Cuboid graphite aggregates testify to precursor conditions for Unit #1 within the diamond stability field, if such textures are correctly interpreted. Measured 18O/16O partitioning between pairs of coexisting phases yield three main recrystallization temperature ranges: (1) 678±83°C, attending Unit #1 eclogite-facies metamorphism; (2) 453±17°C, during transitional blueschist/greenschist-facies metamorphism for the amalgamated Unit #1+Yumaguzinskaya+Unit #2 assembly; and (3) 250±68°C, reflecting late-stage hydrothermal alteration and exhumation. Oxygen isotope data for Units #1 and #2 indicate that garnet, blue amphibole, and pyroxene crystallized in isotopic equilibrium, validating previous thermobarometric calculations for a Unit #1 retrograde metamorphic event. Variations in δ18O values for phengites suggest the possibility of late metamorphic fluid infiltration. Retrograde recrystallization at high pressure in the presence of fluids and a calculated slow exhumation rate for the Maksyutov Complex account for the fact that inferred UHP coesite and diamond were completely back-reacted during decompression.  相似文献   

17.
Joseph M. Pyle 《Lithos》2006,88(1-4):201-232
Analysis of monazite-bearing lithologies from the Precambrian Honey Brook Upland (HBU) and overlying metasedimentary Paleozoic Chester Valley Sequence (CVS) (SE PA, USA) reveals overprinting of primary major and accessory phase parageneses by texturally and compositionally disparate secondary accessory phase parageneses. Two-pyroxene temperatures of 915–945 °C for reconstituted pyroxene reflect emplacement temperatures of felsic plutonic rocks (opdalite, charnockite) prior to Mesoproterozoic metamorphism. Monazite in metavolcanic felsic gneiss yields three age domains at 1009 ± 4 Ma (2 s.e.), 965 ± 6, and 876 ± 10 Ma. The first two domains record metamorphism of the HBU after anorthosite intrusion; peak monazite–xenotime temperatures for the monazite core domain are 700 °C, and high Th/U values in the second (overgrowth) age domain likely reflect a second high-T monazite growth episode. Formation of cummingtonite coronas on orthopyroxene in opdalite constrains maximum 1010 Ma metamorphic temperatures in the “granulite-facies” terrane to 730–740 °C. Evidence of increased Cl fluid activity in the 965 Ma metamorphism includes higher Cl content of matrix apatite relative to garnet-included apatite (metavolcanics), and Cl-bearing K-hornblende succeeding cummingtonite in coronal overgrowths (opdalite). Extreme monazite Th/U values (75–250) in the rim domain suggest growth during low-T hydrothermal alteration. In the opdalite, secondary singe-grain monazite and monazite + xenotime metasomites in apatite yield ages of 714 ± 24 and 586 ± 88 Ma, temperatures of 325–425 °C, and are interpreted to reflect thermal disturbances associated with late Proterozoic plutonic and volcanic activity in the Upland. This thermal disturbance may be recorded by Rb–Sr age of 567 Ma for biotite from a HBU gneiss. Monazite age domains in metaquartzite (378 ± 28, 272 ± 44 Ma) suggest that low-grade metamorphism (260–320 °C, Mnz–Xno thermometry) of the CVS is not a result of Taconian orogenesis.  相似文献   

18.
Toshiaki Tsunogae  M. Santosh 《Lithos》2006,92(3-4):524-536
We report here a multiphase mineral inclusion composed of quartz, plagioclase, K-feldspar, sapphirine, spinel, orthopyroxene, and biotite, in porphyroblastic garnet within a pelitic granulite from Rajapalaiyam in the Madurai Granulite Block, southern India. In this unique textural association, hitherto unreported in previous studies, sapphirine shows four occurrences: (1) as anhedral mineral between spinel and quartz (Spr-1), (2) subhedral to euhedral needles mantled by quartz (Spr-2), (3) subhedral to anhedral mineral in orthopyroxene, and (4) isolated inclusion with quartz (Spr-4). Spr-1, Spr-2, and Spr-4 show direct grain contact with quartz, providing evidence for ultrahigh-temperature (UHT) metamorphism at temperatures exceeding 1000 °C. Associated orthopyroxene shows high Mg/(Fe + Mg) ratio ( 0.75) and Al2O3 content (up to 9.6 wt.%), also suggesting T > 1050 °C and P > 10 kbar during peak metamorphism.

Coarse spinel (Spl-1) with irregular grain morphology and adjacent quartz grains are separated by thin films of Spr-1 and K-feldspar, suggesting that Spl-1 and quartz were in equilibrium before the stability of Spr-1 + quartz. This texture implies that the P–T conditions of the rock shifted from the stability field of spinel + quartz to sapphirine + quartz. Petrogenetic grid considerations based on available data from the FMAS system favour exhumation along a counterclockwise P–T trajectory. The irregular shape of the inclusion and chemistry of the inclusion minerals are markedly different from the matrix phases suggesting the possibility that the inclusion minerals could have equilibrated from cordierite-bearing silicate-melt pockets during the garnet growth at extreme UHT conditions.  相似文献   


19.
The pre-Mesozoic metamorphic belt runs parallel to the Day Nui Con Voi - Red River shear zone in Vietnam to the south. The belt is mainly composed of hornblende gneisses, amphibolite lenses and mica-schists. Five hornblendes from a gneiss and an amphibolite were analyzed chemically and chronologically by Electron Probe Micro Analysis (EPMA) and 40Ar/39Ar methods. EPMA analyses show that hornblendes in the gneiss and the amphibolite have significant amount of edenite component and similar average composition. However, the recalculated Fe3+ content is significantly heterogeneous in a thin section while total Fe is nearly the same among the analyses. The rim of each crystal is higher in Fe3+/(Fe3+ + Fe2+) than the core. These chemical and petrological features suggest that the hornblendes have suffered significant oxidation, in particular, largely in the gneiss.

40Ar/39Ar analyses showed that the gneiss has a significant variation of plateau ages (2089±14, 1977±19 and 1873±13 Ma) among three hornblende grains, whereas the amphibolite gives the same plateau ages (2056±14 and 2044±21 Ma) for two grains. All grains of both samples have excess ages in the first few fractions at low temperatures and partial-loss ages between the excess and plateau spectra. The Ca/K ratios indicate some disturbed phases for the lower temperature spectra but the partial-loss ages are also derived from hornblende phase. These facts suggest that hornblende in the gneiss has experienced partial argon loss by oxidation and/or thermally activated argon diffusion process. However, the gneiss and the associated amphibolite have preserved the early Proterozoic tectono-metamorphic event in the hornblende crystals except for their rims, giving new evidence for the early Proterozoic event within the pre-Mesozoic metamorphic belt (northern Vietnam) south of the Red River shear zone in Indochina.  相似文献   


20.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号