首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
土地利用/覆被(LUC)可为土地资源领域相关研究提供基础数据.本文构建了面向对象的LUC分类方法,并以沿海特殊土地类型区连云港市为例,应用Landsat 8影像开展了实证研究。结果表明:①总体分类精度达到85.06%,总体Kappa系数为0.83,超过了0.7的最低允许判别精度;②该方法可以有效地减少研究区因南北部区域耕地植被覆盖度不同导致的错分现象,并可以用于盐田与滩涂信息的提取工作;③该方法既可为研究区土地利用相关研究提供符合精度要求的数据.也可为其他沿海地区进行土地利用/覆被信息提取工作提供参考和借鉴。  相似文献   

2.
姜芸  王军 《测绘工程》2010,19(4):34-38
随着遥感技术的发展,同一区域的多源遥感影像数据越来越丰富。以哈大齐为例,利用ETM+和SPOT-5数据探讨不同遥感信息融合在土地利用过程中的处理方法,比较不同融合算法在土地分类中的差异,并进行定性和定量比较。为有关部门进行土地规划、管理提供科学依据有着十分重要的意义。  相似文献   

3.
ABSTRACT

Mapping built land cover at unprecedented detail has been facilitated by increasing availability of global high-resolution imagery and image processing methods. These advances in urban feature extraction and built-area detection can refine the mapping of human population densities, especially in lower income countries where rapid urbanization and changing population is accompanied by frequently out-of-date or inaccurate census data. However, in these contexts it is unclear how best to use built-area data to disaggregate areal, count-based census data. Here we tested two methods using remotely sensed, built-area land cover data to disaggregate population data. These included simple, areal weighting and more complex statistical models with other ancillary information. Outcomes were assessed across eleven countries, representing different world regions varying in population densities, types of built infrastructure, and environmental characteristics. We found that for seven of 11 countries a Random Forest-based, machine learning approach outperforms simple, binary dasymetric disaggregation into remotely-sensed built areas. For these more complex models there was little evidence to support using any single built land cover input over the rest, and in most cases using more than one built-area data product resulted in higher predictive capacity. We discuss these results and implications for future population modeling approaches.  相似文献   

4.
Since the collapse of the Soviet Union, the crop cultivation structure in the Aral Sea Basin has changed dramatically, and these changes are worth studying. However, historical crop remote sensing mapping at the watershed scale remains challenging, especially crop misclassification at the cropland edge due to mixed pixels. Therefore, we proposed a field segmentation approach to constrain field edges based on time-series Sentinel-2 remote sensing images and the Google Earth Engine platform and then employed the random forest algorithm to perform crop classification based on time series Landsat/Sentinel-2 images and crop phenology information to produce historical crop maps in the Aral Sea Basin from the 1990s onward. The results showed that the intersection over union between the extracted field edges and in situ-measured field size data was 0.65. The overall accuracy of crop mapping was 95.2% in 2019. Then, we extended our method to historical mapping over the 1991–2015 period with accuracies ranging from 82.8% to 91.3%. Moreover, our method applied to historical mapping works well in terms of accuracy and policy matching. These findings indicate that our method can accurately distinguish cropland edges to reduce classification errors due to mixed pixels. This method is promising for solving the cropland edge problem for historical crop mapping in the Aral Sea Basin and can potentially provide a reference for historical crop classification in other watersheds of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号