首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire.

Results

Net primary production (NPP) predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within ± 2.5% of the mean of plot estimates for annual NPP.

Conclusion

Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF.  相似文献   

2.
ABSTRACT

Mediterranean region is identified as a primary hot-spot for climate change due to the expected temperature and rainfall changes. Understanding the potential impacts of climate change on the hydrology in these regions is an important task to develop long-term water management strategies. The aim of this study was to quantify the potential impacts of the climate changes on local hydrological quantities at the Goksu Watershed at the Eastern Mediterranean, Turkey as a case study. A set of Representative Concentration Pathways (RCP) scenarios were used as drivers for the conceptual hydrological model J2000 to investigate how the hydrological system and the underlying processes would respond to projected future climate conditions. The model was implemented to simulate daily hydrological quantities including runoff generation, Actual Evapotranspiration (AET) and soil-water balance for present (2005–2015) and future (up to 2100). The results indicated an increase of both precipitation and runoff throughout the region from January to March. The region showed a strong seasonally dependent runoff regime with higher flows during winter and spring and lower flows in summer and fall. The study provides a comparative methodology to include meteorological-hydrological modelling integration that can be feasible to assess the climate change impacts in mountainous regions.  相似文献   

3.
The land use and land cover pattern of a region is a consequence of natural and socio-economic factors and their utilization by man in time and space. In this study, we hypothesized that land use and land cover change patterns in the Lake Chivero catchment, Zimbabwe, were related to its human population dynamics. Using nonparametric correlation coefficients (Spearman’s rho, ρ), we found that bareland, cropland and built-up land had positive relations with human population growth of ρ = 0.7, ρ = 0.9 and ρ = 1, respectively. Grassland/shrubland, water and forest, on the other hand, had a negative relationship with human population growth of ρ = ?0.9, ρ = ?0.7 and ρ = ?0.667, respectively. However, these relationships were only significant (p < 0.05) for cropland, grassland/shrubland and built-up land. Human population dynamics in the Lake Chivero catchment could be one of the major drivers of land use and land cover change in the catchment between 1986 and 2014.  相似文献   

4.
针对现有植被净初级生产力研究对城市圈、城市带尺度缺乏关注的问题,基于MODIS遥感数据、地面气象资料等,利用改进的CASA模型,结合回归分析、相关分析等方法探究了2000—2013年皖江城市带植被NPP的时空变化及其对气候因子的响应,为区域生态环境质量评价提供参考。结果表明:近14年来,皖江城市带植被NPP总体呈增加趋势;不同土地利用类型NPP差异显著,林地草地耕地建设用地未利用土地水体;年NPP均值呈现由南部向西北部减少的空间分布特征;植被NPP年际变化率较小,介于±10gC·m-2·a-1范围内;温度是影响研究区植被NPP时空变化的主要气候因子。  相似文献   

5.
基于改进的光能利用率模型,本文利用MODIS数据和同期气象数据估算分析了湖北省2001—2012年间植被净初级生产力(NPP)的时空变化特征并借助多元统计分析方法定量探究自然因素(气温、降水量、太阳辐射)和人为因素(土地覆被/土地利用、粮食播种面积、粮食产量、人口数量)对NPP变化的影响。结果表明:1)湖北省NPP呈波动上升趋势,年际增加趋势为8.19 g/m~2·a;2) NPP空间分布差异明显,呈现西高东低、北高南低、从西向东逐渐递减的态势;3)造林累计面积和太阳辐射变化是影响NPP变化的主要因素。  相似文献   

6.
The rapid population growth and ongoing development activities has resulted in natural resources demolition. However, the dynamics of the natural resources in relation to different biophysical and socio-economic factors are still remains poorly understood. The present study investigates the basic natural resources i.e. forest, rangeland and surface water bodies’ status using satellite data for the years 1990, 1998, and 2006, and their change detection in relation to biophysical and socio-economic factors. Monitoring land-use/cover change detection using remotely sensed data has been a well recognized technique. The analysis of change detection revealed eleven important land cover changes, which occurred during the past 16 years (1990–2006) in the region. The rate of land cover change was observed to vary across the sub periods and a general decline of forest cover and increase in rangelands and water bodies was observed. Logistic regression model was employed to analyze the relationship between changes and explanatory factors. The land cover change results and logistic models developed in this study are useful in supporting natural resources management efforts and provide useful information for managers/policy makers in formulation of sustainable management strategies for the region.  相似文献   

7.
During the HAPEX-Sahel experiment (1991–94), water redistribution processes were studied at the meso-scale (10 000 km2) near Niamey, Niger. A project now under way at ORSTOM aims at modelling the regional water balance through a spatial approach combining GIS data organization and distributed hydrological modelling. The main objective is to extend the surface water balance, by now available only on a few, small (around 1 km2) unconnected endoreic catchments, to a more significant part of the HAPEX-Sahel square degree, a 1500 km2 region called SSZ that includes most of the environmental and hydrology measurement sites. GIS architecture and model design consistently consider data and processes at the local, catchment scale, and at the regional scale. The GIS includes spatial and temporal hydrological data (rainfall, surface runoff, ground water), thematic maps (topography, soil, geomorphology, vegetation) and multi-temporal remote sensing data (SPOT, aerial pictures). The GIS supports the simulation of the composite effect at the regional scale of highly variable and discontinuous component hydrologic processes operating at the catchment scale, in order to simulate inter-annual aquifer recharge and response to climatic scenarios at the regional scale.  相似文献   

8.
Tropical forest mapping is one of the major environmental concerns at global and regional scales in which remote sensing techniques are firmly involved. This study examines the use of the variogram function to analyse forest cover fragmentation at different image scales. Two main aspects are considered here: (1) analysis of the spatial variability structure of the forest cover observed at three different scales using fine, medium and coarse spatial resolution images; and (2) the study of the relationship between rescaled images from the finest spatial resolution and those of the medium and coarse spatial resolutions. Both aspects are analysed using the variogram function as a basic tool to calculate and interpret the spatial variability of the forest cover. An example is presented for a Brazilian tropical forest zone using satellite images of different spatial resolutions acquired by Landsat TM (30 m), Resurs MSU (160 m) and ERS ATSR (1000 m). The results of this study contribute to establishing a suitable spatial resolution of remotely sensed data for tropical forest cover monitoring.  相似文献   

9.
Changes in forest composition impact ecological services, and are considered important factors driving global climate change. A hybrid sampling method along with a modelling approach to map current and past land cover in Kunming, China is reported. MODIS land cover (2001–2011) data-sets were used to detect pixels with no apparent change. Around 3000 ‘no change points’ were systematically selected and sampled using Google Earth’s high-resolution imagery. Thirty-five per cent of these points were verified and used for training and validation. We used Random forests to classify multi-temporal Landsat imagery. Results show that forest cover has had a net decrease of 14385?ha (1.3% of forest area), which was primary converted to shrublands (11%), urban and barren land (2.7%) and agriculture (2.5%). Our validation indicates an overall accuracy (Kappa) of 82%. Our methodology can be used to consistently map the dynamics of land cover change in similar areas with minimum costs.  相似文献   

10.
2009年武汉市植被净初级生产力估算   总被引:1,自引:0,他引:1  
利用CASA模型,结合实测的光合有效辐射(PAR)数据、MODIS归一化植被指数(NDVI)和Land Cover数据、气象数据等资料,估算了2009年武汉市的植被净初级生产力(NPP)。结果显示,武汉市的植被平均单位面积年NPP产量达到464.19gC·m^-2·a^-1。6、7、8三个月NPP积累值最高,占全年的56.8%;12、1、2三个月NPP值最低,仅占5.6%。黄陂区由于林地较广,NPP值较大,在1 000gC·m^-2·a^-1以上;而城市周边由于植被覆盖面积较小,NPP值较低,在400gC·m^-2·a^-1以下。  相似文献   

11.
Net primary productivity (NPP) is an important indicator of ecosystem health and its estimation and understanding of factors determining its spatial and temporal variations is critical. It is important to note that biophysical factors and human induced factors are interlinked in determining NPP patterns. Nevertheless, it is difficult to consider some aspects of human management systems in relation to NPP variations on a global scale analysis than on a local scale analysis. In this study, we tested the hypothesis that, at the local scale, particularly in highly intensive systems, land-use/land tenure types influence NPP variations by altering the biophysical conditions of the land. We estimated NPP between 2000 and 2009 using MODIS data and used ANOVA to test the abovementioned hypotheses. Results showed that NPP significantly (p < 0.05) varied by land-use/land tenure type. We also found that biophysical factors remained essential in explaining NPP variations even at local scales. These results exhibit the intricacies that exist between the biophysical and human-induced factors in explaining NPP variations within ecological landscapes.  相似文献   

12.
An extensive land cover change was triggered by a series of typhoons, especially Typhoon Morakot in 2009 in Taiwan. The normalized difference vegetation index (NDVI) series from multiple satellite images were applied to monitor the change processes of land cover. This study applied spatiotemporal analysis tools, including empirical orthogonal functions (EOF), and multiple variograms in analyzing space–time NDVI data, and detected the effects of large chronological disturbances in the characteristics of land cover changes. Spatiotemporal analysis delineated the temporal patterns and spatial variability of NDVI caused by these large typhoons. Results showed that mean of NDVI decreased but spatial variablity of NDVI increased after typhoons in the study area. The EOF can clarify the major component of NDVI variations and identify the core area of the NDVI changes. Various approaches showed consistent results that Typhoon Morakot significantly lowered the NDVI in land cover change process. Furthermore, the spatiotemporal analysis is an effective monitoring tool, which advocates the use of the index for the quantification of land cover change and resilience.  相似文献   

13.
This paper describes different change detection techniques, including image differencing, image rationing, image regression and change vector analysis (CVA) to assess their effectiveness for detecting land use/cover change in a Mediterranean environment. Three Landsat TM scenes recorded on 7 July 1985, 27 July 1993 and 21 July 2005 were used to minimize change detection error introduced by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. The four change detection techniques were applied and an object-based supervised classification was used as a crossclassification to determine ‘from–to’ change which enabled assessment of the four techniques. The change vector analysis resulted in the largest overall accuracy of 75.25 and 75.55% for the 1985–1993 and 1993–2005 image pairs, respectively. The ratio yielded the least accurate results with an overall accuracy of 59.10 and 61.05% for the 1985–1993 and 1993–2005 image pairs, respectively. Different change detection algorithms have their own merits and advantages. However, the change vector analysis change detection technique was the most accurate model for handling the variability present in Mediterranean land use/cover.  相似文献   

14.
The monitoring of terrestrial carbon dynamics is important in studies related with global climate change. This paper presents results of the inter-annual variability of Net Primary Productivity (NPP) from 1981 to 2000 derived using observations from NOAA-AVHRR data using Global Production Efficiency Model (GloPEM). The GloPEM model is based on physiological principles and uses the production efficiency concept, in which the canopy absorption of photosynthetically active radiation (APAR) is used with a conversion “efficiency” to estimate Gross Primary Production (GPP). NPP derived from GloPEM model over India showed maximum NPP about 3,000 gCm−2year−1 in west Bengal and lowest up to 500 gCm−2year−1 in Rajasthan. The India averaged NPP varied from 1,084.7 gCm−2year−1 to 1,390.8 gCm−2year−1 in the corresponding years of 1983 and 1998 respectively. The regression analysis of the 20 year NPP variability showed significant increase in NPP over India (r = 0.7, F = 17.53, p < 0.001). The mean rate of increase was observed as 10.43 gCm−2year−1. Carbon fixation ability of terrestrial ecosystem of India is increasing with rate of 34.3 TgC annually (t = 4.18, p < 0.001). The estimated net carbon fixation over Indian landmass ranged from 3.56 PgC (in 1983) to 4.57 PgC (in 1998). Grid level temporal correlation analysis showed that agricultural regions are the source of increase in terrestrial NPP of India. Parts of forest regions (Himalayan in Nepal, north east India) are relatively less influenced over the study period and showed lower or negative correlation (trend). Finding of the study would provide valuable input in understanding the global change associated with vegetation activities as a sink for atmospheric carbon dioxide.  相似文献   

15.
Total evaporation is of importance in assessing and managing long-term water use, especially in water-limited environments. Therefore, there is need to account for water utilisation by different land uses for well-informed water resources management and future planning. This study investigated the feasibility of using multispectral Landsat 8 and moderate resolution imaging spectroradiometer (MODIS) remote sensing data to estimate total evaporation within the uMngeni catchment in South Africa, using surface energy balance system. The results indicated that Landsat 8 at 30 m resolution has a better spatial representation of total evaporation, when compared to the 1000 m MODIS. Specifically, Landsat 8 yielded significantly different mean total evaporation estimates for all land cover types (one-way ANOVA; F4.964?=?87.011, p < 0.05), whereas MODIS failed to differentiate (one-way ANOVA; F2.853?=?0.125, p = 0.998) mean total evaporation estimates for the different land cover types across the catchment. The findings of this study underscore the utility of the Landsat 8 spatial resolution and land cover characteristics in deriving accurate and reliable spatial variations of total evaporation at a catchment scale.  相似文献   

16.
Post-fire vegetation cover is a crucial parameter in rangeland management. This study aims to assess the post-fire vegetation recovery 3 years after the large 2007 Peloponnese (Greece) wildfires. Post-fire recovery landscapes typically are mixed vegetation-substrate environments which makes spectral mixture analysis (SMA) a very effective tool to derive fractional vegetation cover maps. Using a combination of field and simulation techniques this study aimed to account for the impact of background brightness variability on SMA model performance. The field data consisted out of a spectral library of in situ measured reflectance signals of vegetation and substrate and 78 line transect plots. In addition, a Landsat Thematic Mapper (TM) scene was employed in the study. A simple SMA, in which each constituting terrain feature is represented by its mean spectral signature, a multiple endmember SMA (MESMA) and a segmented SMA, which accounts for soil brightness variations by forcing the substrate endmember choice based on ancillary data (lithological map), were applied. In the study area two main spectrally different lithological units were present: relatively bright limestone and relatively dark flysch (sand-siltstone). Although the simple SMA model resulted in reasonable regression fits for the flysch and limestones subsets separately (coefficient of determination R2 of respectively 0.67 and 0.72 between field and TM data), the performance of the regression model on the pooled dataset was considerably weaker (R2 = 0.65). Moreover, the regression lines significantly diverged among the different subsets leading to systematic over-or underestimations of the vegetative fraction depending on the substrate type. MESMA did not solve the endmember variability issue. The MESMA model did not manage to select the proper substrate spectrum on a reliable basis due to the lack of shape differences between the flysch and limestone spectra,. The segmented SMA model which accounts for soil brightness variations minimized the variability problems. Compared to the simple SMA and MESMA models, the segmented SMA resulted in a higher overall correlation (R2 = 0.70), its regression slope and intercept were more similar among the different substrate types and its resulting regression lines more closely resembled the expected one-one line. This paper demonstrates the improvement of a segmented approach in accounting for soil brightness variations in estimating vegetative cover using SMA. However, further research is required to evaluate the model's performance for other soil types, with other image data and at different post-fire timings.  相似文献   

17.
Remote sensing (RS) time series are an excellent operative source for information about the land surface across several scales and different levels of landscape heterogeneity. Ustin and Gamon (2010) proposed the new concept of “optical types” (OT), meaning “optically distinguishable functional types”, as a way to better understand remote sensing signals related to the actual functional behavior of species that share common physiognomic forms but differ in functionality. Whereas the OT approach seems to be promising and consistent with ecological theory as a way to monitor vegetation derived from RS, it received little implementation.This work presents a method for implementing the OT concept for efficient monitoring of ecosystems based on RS time series. We propose relying on an ecosystem's repetitive pattern in the temporal domain (self-similarity) to assess its dynamics. Based on this approach, our main hypothesis is that distinct dynamics are intrinsic to a specific OT. Self-similarity level in the temporal domain within a broadleaf forest class was quantitatively assessed using the auto-correlation function (ACF), from statistical time series analysis. A vector comparison classification method, spectral angle mapper, and principal component analysis were used to identify general patterns related to forest dynamics. Phenological metrics derived from MODIS NDVI time series using the TIMESAT software, together with information from the National Forest Map were used to explain the different dynamics found.Results showed significant and highly stable self-similarity patterns in OTs that corresponded to forests under non-moisture-limited environments with an adaptation strategy based on a strong phenological synchrony with climate seasonality. These forests are characterized by dense closed canopy deciduous forests associated with high productivity and low biodiversity in terms of dominant species. Forests in transitional areas were associated with patterns of less temporal stability probably due to mixtures of different adaptation strategies (i.e., deciduous, marcescent and evergreen species) and higher functional diversity related to climate variability at long and short terms. A less distinct seasonality and even a double season appear in the OT of the broadleaf Mediterranean forest characterized by an open canopy dominated by evergreen-sclerophyllous formations. Within this forest, understory and overstory dynamics maximize functional diversity resulting in contrasting traits adapted to summer drought, winter frosts, and high precipitation variability.  相似文献   

18.
The effects of climate change on hydrological regimes have become a priority area for water and catchment management strategies. The terrestrial hydrology driven by monsoon rainfall plays a crucial role in shaping the agriculture, surface and ground water scenario in India. Thus, it is imperative to assess the impact of the changing climatic scenario projected under various climate change scenario towards the hydrological aspects for India. Runoff is one of the key parameters used as an indicator of hydrological process. A study was taken up to analyse the climate change impact on the runoff of river basins of India. The global circulation model output of Hadley centre (HADCM3) projected climate change data was used. Scenario for 2080 (A2 scenario indicating more industrial growth) was selected. The runoff was modeled using the curve number method in spatial domain using satellite derived current landuse/cover map. The derived runoff was compared with the runoff using normal climatic data (1951–1980). The results showed that there is a decline in the future climatic runoff in most of the river basins of India compared to normal climatic runoff. However, significant reduction was observed for the river basins in the eastern region viz: lower part of Ganga, Bahamani-Baitrani, Subarnrekha and upper parts of the Mahanadi. The mean projected runoff reduction during monsoon season (June–September) were 18 Billion Cubic Meter (BCM), 3.2 BCM, 3.5 BCM and 5.9 BCM for Brahmaputra-Barak Subarnrekha, Subarnarekha and Brahmini-Baitrani basin, respectively in comparison to normal climatic runoff. Overall reduction in seasonal runoff was high for Subarnrekha basin (54.1%). Rainfall to runoff conversion was high for Brahmaputra-Barak basin (72%), whereas coefficient of variation for runoff was more for Mahanadi basin (1.88) considering the monsoon season. Study indicates that eastern India agriculture may be affected due to shortage of surface water availability.  相似文献   

19.
Six widely used coarse-resolution global land cover data-sets – Global Land Cover Characterization (GLCC), Global Land Cover 2000 (GLC2000), GlobCover land cover product (GlobCover), MODIS land cover product (MODIS LC), the University of Maryland land cover product (UMD LC), and the MODIS Vegetation Continuous Fields tree cover layer (MODIS VCF) disagree substantially in their estimates of forest cover. Employing a regression tree model trained on higher-resolution, Landsat-based data, these multisource multiresolution maps were integrated for an improved characterization of forest cover over North America. Evaluated using a withheld test sample, the integrated percent forest cover (IPFC) data-set has a root mean square error of 11.75% – substantially better than the 17.37% of GLCC, 17.61% of GLC2000, 17.96% of GlobCover, 15.23% of MODIS LC, 19.25% of MODIS VCF, and 15.15% of UMD LC, respectively. Although demonstrated for forest, this approach based on integration of multiple products has potential for improved characterization of other land cover types as well.  相似文献   

20.
The aim of this study is to use full spatial resolution Envisat MERIS data to drive an ecosystem productivity model for pine forests along the Mediterranean coast of Turkey. The Carnegie, Ames, Stanford Approach (CASA) terrestrial biogeochemical model, designed to simulate the terrestrial carbon cycle using satellite sensor and meteorological data, was used to estimate annual regional fluxes in terrestrial net primary productivity (NPP). At its core this model is based on light-use efficiency, influenced by temperature, rainfall and solar radiation. Present climate data was generated from 50 climate stations within the watershed using co-kriging. Regional scale pseudo-warming data for year 2070 were derived using a Regional Climate Model (RCM) these data were used to downscale the GCM General Circulation Model for the research area as part of an international research project called Impact of Climate Changes on Agricultural Production Systems in Arid Areas (ICCAP). Outputs of climate data can be moderated using the four variables of percent tree cover, land cover, soil texture and NDVI. This study employed 47 MERIS images recorded between March 2003 and September 2005 to derive percent tree cover, land cover and NDVI. Envisat MERIS data hold great potential for estimating NPP with the CASA model because of the appropriateness of both its spatial and its spectral resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号