首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We propose a model which describes the formation of a strong asperity on a fault. We consider a fault surface which differs slightly from a plane due to a jog-like topographic variation. The fault is placed in an elastic space and is subject to a uniform stress field. The orientation of the fault is such that the normal traction (which is compressive) is greater on the topographic variation, determining a higher static friction and hence an asperity. The value of friction on this asperity depends on the magnitude of shear stress. For times of seismological interest, the increase in shear stress, at rates typical of tectonic processes, does not produce a sensible increase in friction with respect to the adjacent fault segments. A considerable increase in friction and the formation of a strong asperity (or even a barrier) can occur due to repeated seismic-slip episodes on the fault. Slip results in an elastic medium deformation, causing an increase in normal traction on the asperity and hence in friction. This process is described with the aid of a tensile Somigliana dislocation. Regions with high friction undergo partial fracturing of the fault-face material, which can produce fault gouge. The tensile dislocation introduces a small non-double-couple component in the seismic moment of the seismic event, the magnitude of this component depending mainly on the relative size of the asperity.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

13.
We seek to understand how the stress interactions and the slip-weakening process combine within a non-coplanar, normal fault network to allow a slip instability to develop, and shape the final slip distribution on the system. In a first part, we perform a non-linear spectral analysis to investigate the conditions of stability and the process of slip initiation in an antiplane non-coplanar fault system subject to a slip-dependent friction law. That numerical model allows determining the zones that are able to slip within a fault network, as well as the location of the stress singularities. The resulting slip profiles on the faults show only a few different shapes, some of them with long, linear sections. This leads to formulate a general classification of slip profiles that can be used to infer the degree of fault interaction within any non-coplanar system. In a second part of work, we use our modelling to try reproducing the cumulative slip profiles measured on three real normal interacting faults forming a large-scale en echelon system. For that, we assume that cumulative slip profiles can be compared to the first static modal solution of our conceptual model. We succeed reproducing the profiles quite well using a variable weakening along the faults. Overall, the weakening rate decreases in the direction of propagation of the fault system. Yet, modelling the slip along the propagating, isolated termination segment of the system requires an unlikely distribution of weakening. This suggests that factors not considered in our analysis may contribute to slip profile shaping on isolated, propagating faults.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Analytical solutions for the piezomagnetic potentials are derived for strike-slip, dip-slip and tensile-opening fault motions with arbitrary dip and strike angles, so as to be applicable in various types of earthquakes. These solutions are expressed as the composition of elementary functions which are identical to the magnetic potentials produced by magnetic dipoles, quadrupoles and octupoles distributed on the fault plane and other planes. Therefore, the geomagnetic field changes due to the piezomagnetic effect are expressed by the superposition of the fields produced by these equivalent sources.
Examples of calculated results show characteristic features for various types of fault motions as follows: (1) the pattern of the geomagnetic field changes becomes significantly different depending on the strike direction, although the maximum amplitude is almost the same for all directions; (2) the geomagnetic field change reaches a maximum at a dip angle of 90° for strike-slip and tensile-opening fault motions and at 45° for dip-slip fault motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号