首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the present paper self-similar solutions have been investigated for the propagation of piston driven, radiative gas-dynamic shocks into an inhomogeneous ideal gas permeated by a current free azimuthal magnetic field for spherical symmetry. The effects of radiation flux and magnetic field together have been seen in the region of interest on the other flow variables. The total energy of the flow between the piston and the shock is taken to be dependent on the shock radius obeying a power law. The radiative pressure and energy have been neglected. This problem is more general than the others done so far. The word piston implies some means to drive plasma radially onwards.  相似文献   

2.
The response of an axially symmetric rigid rotator to incident gravitational radiation is discussed for particular states of free rotator motion using generalized EULERian equations, and assuming wavelengths large compared with the rotator dimensions. First, if coincident initially, the rotation and the symmetry axes slightly differ after exposed to a radiation flux which has suitable polarization and propagates perpendicular to the rotation axis. Secondly, the angular velocity of a rotation perpendicular to the symmetry axis is changed in a wave field propagating in the direction of the rotation axis (BRAGINSKI-rotator). — For highly monochromatic resonance radiation with wave frequencies equal to the rotation frequency (in the first case) or twice the rotation frequency (second case), the response is sufficiently large to have some interest for future experiments.  相似文献   

3.
Oscillation modes of relativistic slender tori   总被引:1,自引:0,他引:1  
Accretion flows with pressure gradients permit the existence of standing waves which may be responsible for observed quasi-periodic oscillations (QPO's) in X-ray binaries. We present a comprehensive treatment of the linear modes of a hydrodynamic, non-self-gravitating, polytropic slender torus, with arbitrary specific angular momentum distribution, orbiting in an arbitrary axisymmetric space–time with reflection symmetry. We discuss the physical nature of the modes, present general analytic expressions and illustrations for those which are low order, and show that they can be excited in numerical simulations of relativistic tori. The mode oscillation spectrum simplifies dramatically for near Keplerian angular momentum distributions, which appear to be generic in global simulations of the magnetorotational instability. We discuss our results in light of observations of high frequency QPO's, and point out the existence of a new pair of modes which can be in an approximate 3:2 ratio for arbitrary black hole spins and angular momentum distributions, provided the torus is radiation pressure dominated. This mode pair consists of the axisymmetric vertical epicyclic mode and the lowest order axisymmetric breathing mode.  相似文献   

4.
Assuming spherical symmetry we analyse the dynamics of an inhomogeneous dark radiation vaccum on a Randall and Sundrum 3-braneworld. Under certain natural conditions we show that the effective Einstein equations on the brane form a closed system. On a de Sitter brane and for negative dark energy density we determine exact dynamical and inhomogeneous solutions which depend on the brane cosmological constant, on the dark radiation tidal charge and on its initial configuration. We also identify the conditions leading to the formation of a singularity or of regular bounces inside the dark radiation vaccum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
An heuristic hypothesis is advanced about dominant Bose statistics during the transition from the radiation era to the matter era in the early universe. It is shown that large scale Bose condensation of matter from baryon-antibaryon pairs is possible, as a result of which a colossal amount of mass may accumulate in a volume of cosmic scale. At a threshold density of matter, the structural bosons decay into the fermions of which they are composed, so that a sudden change in the symmetry of the wave functions of the particles causes a jump from Bose-Einstein to Fermi-Dirac statistics. This involves a large scale phase transition with an enormous pressure jump which may show up as a cosmological bang at the beginning of the matter era. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 161–172 (February 2008).  相似文献   

6.
An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method. The Kaula inclination functions are replaced by an equivalent set of modified Allan inclination functions.The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, 1976), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonsnce with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure.  相似文献   

7.
Equilibrium configuration of the upper Main-Sequence stars, with significant radiation pressure and having an interior magnetic field (matching with an external dipole field) has been cosidered. The structural parameters have been calculated for low and high magnetic fields by using a first-order perturbation method and a modified perturbation technique respectively. With the increase of radiation pressure, the star is seen to become more centrally condensed.  相似文献   

8.
《Planetary and Space Science》2006,54(9-10):855-870
We develop a model of stochastic radiation pressure for rotating non-spherical particles and apply the model to circumplanetary dynamics of dust grains. The stochastic properties of the radiation pressure are related to the ensemble-averaged characteristics of the rotating particles, which are given in terms of the rotational time-correlation function of a grain. We investigate the model analytically and show that an ensemble of particle trajectories demonstrates a diffusion-like behaviour. The analytical results are compared with numerical simulations, performed for the motion of the dusty ejecta from Deimos in orbit around Mars. We find that the theoretical predictions are in a good agreement with the simulation results. The agreement however deteriorates at later time, when the impact of non-linear terms, neglected in the analytic approach, becomes significant. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may in case of some dusty systems noticeably alter an optical depth.  相似文献   

9.
The magnetic fields of white dwarfs distort their shape generating an anisotropic moment of inertia. A magnetized white dwarf that rotates obliquely relative to the symmetry axis has a mass quadrupole moment that varies in time, so it will emit gravitational radiation. The Laser Interferometer Space Antenna ( LISA ) mission may be able to detect the gravitational waves from two nearby, rapidly rotating white dwarfs.  相似文献   

10.
A point explosion with thermal radiation in an axially symmetric inhomogeneous medium is investigated by generalizing the method of Laumbach and Probstein to include the effects of radiative cooling. As an example, a point explosion in the plane stratified transparent medium with exponential density distribution is calculated. It is shown that the focusing effect along the symmetry axis is enhanced by radiative cooling effect. Explosion models of extragalactic double radio sources are briefly discussed.  相似文献   

11.
The influence of strong, large‐scale magnetic fields on the structure and temperature distribution in white dwarf atmospheres is investigated. Magnetic fields may provide an additional component of pressure support, thus possibly inflating the atmosphere compared to the non‐magnetic case. Since the magnetic forces are not isotropic, atmospheric properties may significantly deviate from spherical symmetry. In this paper the magnetohydrostatic equilibrium is calculated numerically in the radial direction for either for small deviations from different assumptions for the poloidal current distribution. We generally find indication that the scale height of the magnetic white dwarf atmosphere enlarges with magnetic field strength and/or poloidal current strength. This is in qualitative agreement with recent spectropolarimetric observations of Grw+10°8247. Quantitatively, we .nd for e.g. a mean surface poloidal field strength of 100 MG and a toroidal field strength of 2‐10 MG an increase of scale height by a factor of 10. This is indicating that already a small deviation from the initial force‐free dipolar magnetic field may lead to observable effects. We further propose the method of finite elements for the solution of the two‐dimensional magnetohydrostatic equilibrium including radiation transport in the diffusive approximation. We present and discuss preliminary solutions, again indicating on an expansion of the magnetized atmosphere.  相似文献   

12.
Self-similar flows of a perfect gas behind a cylindrical blast wave with radiation heat flux in the presence of an azimuthal magnetic field have been investigated. The effects of radiation flux and magnetic field together on the other flow variables have been studied in the region of interest. The magnetic field and density distribution vary as an inverse power of radial distance from the axis of symmetry. The electrical conductivity of the gas is taken to be infinite. The total energy of the flow between the inner expanding surface and the shock is assumed to be constant. We also have supposed the gas to be grey and opaque and the shock to be transparent and isothermal.  相似文献   

13.
We apply the ballistic particle-cluster and cluster-cluster aggregation of spherical monomers identical in size and material composition to study the effect of the particle's shape and structure on the radiation pressure force acting on circumstellar dust particles. Furthermore, the influence of the material composition on the radiation pressure is investigated based on the assumption that the constituents of dust aggregates are composed of either silicate or carbon.We show that the ratio of radiation pressure to stellar gravity in the radial direction from a star is weaker for aggregates than for homogeneous spherical grains in the radius range of submicron or less. Therefore fluffy dust particles of submicron radius have a longer dynamical lifetime, compared to compact spherical particles. We also show that the nonradial component of the radiation pressure force can reach the same order of magnitude as the radial component of the radiation pressure reduced by stellar gravity for aggregates of submicron or less in size. This non-radial component of the radiation pressure may yield a component of random motion along the trajectories of the particles.  相似文献   

14.
15.
《Icarus》1987,71(3):472-477
Sodium atoms in the atmosphere of Mercury can be accelarated by solar radiation pressure, and several authors have suggested that radiation pressure could sweep sodium off the planet, provided that the sodium is nonthermal, with velocities in excess of 2.1 km/sec. As a consequence, the sodium abundance might be expected to decrease as the radiation pressure increases. We have measured the average sodium abundance over a range of solar radiation pressures and found that the sodium abundance does decrease with increasing radiation pressure. However, high-resolution line profile measurements of the sodium emission show that little, if any of the sodium is nonthermal, with the bulk at a temperature approximating that of the surface. Models which assume that the bulk of the sodium is nonthermal are ruled out. Possible explanations for the observed variation are (1) that radiation pressure sweeps away transient high-velocity sodium atoms generated upon meteoric material impacts, thus reducing the supply rate of sodium, or (2) that the accommodation coefficient of sodium for surface interactions is less than unity, so that radiation pressure can effectively push sodium to the dark side of the planet, where it cannot be detected by scattered sunlight.  相似文献   

16.
The law of limb darkening has been calculated when the atmosphere of the primary component is illuminated by the extended surface of the secondary component in a binary system. The specific intensities calculated at infinity show marked changes when the plane-parallel approximation is replaced by the assumption of spherical symmetry. The middle portions of the illuminated surface reflect maximum radiation while the innermost and outermost layers show lesser amount of reflected radiation.  相似文献   

17.
We have calculated the effects of irradiation from a point source observed at infinity. Plane-parallel approximation and spherically-symmetric approximations are employed in calculating the self-radiation field for the sake of comparison. It is found that there are considerable changes in the radiation received at infinity between the approximation of plane-parallel stratification and spherical symmetry.  相似文献   

18.
O. Bschorr 《Solar physics》1982,79(2):327-331
In addition to the heating the corona by sound waves, there exists a radiation pressure caused by the absorption of acoustic waves as well as plasma waves. Whereas in the hydrostatic balance of the solar atmosphere, the light pressure can be neglected, the radiation pressure due to acoustic waves and Alfvén waves is much higher and has to be taken into account.In the solar atmosphere, the acoustic radiation pressure is generated by (i) absorption of sound energy, (ii) reflection of sound energy, and (iii) change of the sound velocity.The radiation pressure caused by absorption is dominating within the solar corona. The radiation pressure caused by reflection and the wave velocity change probably produce a pressure inversion in the transition zone between chromosphere and corona. Furthermore, the spicule phenomena are due to instationary radiation pressure.  相似文献   

19.
An exact similarity solution for a spherical magnetogasdynamic shock is obtained in the case when radiation energy, radiation pressure and radiative heat flux are important. The total energy of the shock wave increase with time. We have shown that due to the magnetic field the flow variables are considerably changed. Also, due to increases in radiation pressure number the radiation flux is increased.  相似文献   

20.
A definite integral which occurs in radiation theory is shown to be equal in value to another definite integral by evaluating the flux from a spherically symmetrical radiating sphere in two ways. As a corollary, an alternate proof of the invariance of the specific intensity of a ray in empty space along its path is presented.Furthermore, the equality of these two indefinite integrals leads to the conversion of members of a class of indefinite and definite integrals involving arbitrary functions of angle into other integrals. These transformations facilitate the calculation of some of these integrals which arise not only in the theory of radiation, but in other physical situations with spherical or axial symmetry — especially those in which inverse-square laws are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号