首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

2.
Mercury contents in Precambrian banded iron formation-hosted hematite ores are virtually unknown. In an attempt to provide information on the abundance and distribution of Hg in Fe ore, we present analyses for Hg in samples of high-grade soft hematite ore from Gongo Soco, Minas Gerais, Brazil. Bulk samples contain from <  5 to 25  ppb Hg without obvious correlation with major elements. Granulometric fractions of follow-up samples have amounts of Hg from 6 to 48  ppb and display positive linear correlations with total Mn as MnO (r = 0.87), LOI (r = 0.87) and SiO2 (r = 0.76), as well as a negative linear correlation with total Fe as Fe2O3 (r = −  0.87). The correlations suggest that Hg is associated with a hydrated ferruginous groundmass bearing residual Mn, Al and Si, which replaced gangue minerals in itabirite in the process of formation of the Gongo Soco soft hematite ore.  相似文献   

3.
Precambrian banded iron formations (BIFs) in the Quadrilátero Ferrífero host a special kind of Au–Pd mineralization known as Jacutinga. The main orebodies are hosted within the Cauê Syncline, a SW-verging fold that involves Paleoproterozoic metasedimentary rocks in the Itabira District, a regional synclinorium with BIFs in the core of synclinal folds in the northeastern part of Quadrilatéro Ferrífero, Minas Gerais. Structural analysis reveals two important features of the district: the polydeformed character of the rocks and the importance of brittle structures in the control of the orebodies. Two deformational events are recognized in this area. The first event developed the main foliation, S1, that is the enveloping surface of the Cauê Syncline. The second event is better defined in the northern boundary of the structure where it is represented by a right-lateral wrench fault zone that has developed a foliation, S2, that truncates S1. This wrench fault was also responsible for the development of a system of fractures (Frm) that host the Au–Pd mineralization. The auriferous bodies of Cauê Syncline (Y, X, Área Central, Aba Norte, Noroeste and Aba Leste/Aba Leste Inferior) were generated during this second event. Shear fractures (R, R′ and P) and tension fractures (T) developed in response to the wrench fault system under brittle conditions. The best-developed, and most commonly mineralized fractures are R and T in all auriferous bodies. Elsewhere, the best mineralization occurs in the contacts of hematite bodies (soft/hard) and intrusive rocks with fractured itabirites. Other mineralization (Aba Norte, Área Central and X) is hosted on the contacts of other units.A system of fractures, as well as their intersections, thus represents the structural control on Jacutinga bodies and is responsible for the geometry of the orebodies. Of importance, there is no control by mineral/stretching lineations, fold axes and other ductile structure on the geometry and plunge of the orebodies.  相似文献   

4.
The gold–tourmaline quartz–vein deposit of Passagem de Mariana, in the southeastern part of the Quadrilátero Ferrífero, produced more than 60 tonne of gold, from the end of the 17th Century until 1954. The mine has not operated since 1985. Orebodies are veins composed of white quartz (> 60 vol.%), carbonate (ankerite), tourmaline, sericite and sulfides. Tourmaline (dravite), up to 10 vol.% of the vein, occurs as subhedral, coarse, commonly zoned crystals, and is concentrated along vein boundaries and on the edges of host rock inclusions in the veins. Tourmaline is present in all rock types in the mine, but the chemical composition of the host rocks determinates the intensity of tourmalinization, with the alteration being greater in sericitic phyllites, graphite–sericite phyllites, and calcareous rocks. The most abundant sulfide is arsenopyrite, which is normally associated with pyrite and pyrrhotite. Minor amounts of chalcopyrite, galena, löllingite, berthierite, and maldonite are present throughout the deposit. Sulfides are concentrated at veins boundary or are dispersed in the veins. Arsenopyrite is associated, most commonly, with calcareous rocks, and graphite–sericite phyllite. Pyrrhotite is usually found at the base of itabirites. Gold abundance is directly proportional to sulfide concentration. Hydrothermal alteration associated with the veins includes silicification, tourmalinization, and sulfidation. The mineralized zone is a shear zone associated with a bedding-parallel thrust fault that juxtaposes the itabirite (Lower Proterozoic Minas Supergroup) over other units. This shear zone/thrust fault extends for tens of km beyond the Passagem mine and hosts numerous gold deposits. The richest orebodies are along the itabirite footwall contact and within the graphite–sericite phyllite (Main orebody). Although many lithologic units were mineralized the graphite–sericite phyllite appears to have been most favorable for gold deposition.The area underwent three phases of deformation, D1, D2 and D3. Mineral assemblages indicate upper-greenschist to lower-amphibolite conditions of regional metamorphism. Retrograde metamorphism, characterized by chloritization of biotite and chloritization and biotitization of garnet, developed locally. The gold-bearing veins crosscut the main foliation and lithologic contacts at low angle and occur within, or are in contact with, all lithotypes. Field and laboratory data indicate that gold mineralization at Passagem de Mariana is epigenetic. Gold deposition occurred after the peak of metamorphism, within the late- to post-D2 period of deformation, which is correlated with second set of structures of Trasamazonian age of Alkmim and Marshak [Alkmim, F.F., Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Research 90, 29-58.], indicating that the gold mineralization occurred between 2.124 and 2.04 Ga. We choose to regard Passagem de Marina as an orogenic gold deposit as defined by Groves et al. [Groves, D. I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., Robert, F., 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13, 7-27.], i.e., an epigenetic, structurally-hosted lode–gold vein system in a deformed metamorphic terrane.  相似文献   

5.
Archean terrains of the Quadrilátero Ferrífero comprise a greenstone belt association surrounded by granitoid–gneiss complexes, mainly composed of banded TTG gneisses whose igneous protoliths are older than 2900 Ma. This early continental crust was affected by three granitic magmatic episodes during the Neoarchean: ca. 2780 to 2760 Ma; 2720 to 2700 Ma; and 2600 Ma. Dating of felsic volcanic and volcaniclastic rocks defines a felsic magmatic event within the greenstone belt association around 2772 Ma, contemporaneous with emplacement of several of the granitic plutons and constrains a major magmatic and tectonic event in the Quadrilátero Ferrífero. Lead isotopic studies of lode–gold deposits indicate that the main mineralization episode occurred at about 2800 to 2700 Ma.Proterozoic evolution of the Quadrilátero Ferrífero comprises deposition of a continental-margin succession hosting thick, Lake Superior-type banded iron formations, at ca. 2500 to 2400 Ma, followed by deposition of syn-orogenic successions after 2120 Ma. The latter is related to the Transamazonian Orogeny. The western part of the Quadrilátero Ferrífero was also affected by the Brasiliano Orogeny (600 to 560 Ma).  相似文献   

6.
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

7.
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

8.
The orogenic banded iron formation (BIF)-hosted Au mineralization at São Bento is a structurally-controlled, hydrothermal deposit hosted by Archean rocks of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero region, Brazil. The deposit has reserves of 14.3 t Au and historical (underground) production of 44.6 t Au between 1987 and 2001. The oxide-facies São Bento BIF is mineralized at its lower portion, where in contact with carbonaceous, pelitic schists, particularly in the proximity of sulfide-bearing quartz veins. Shear-related Au deposition is associated with the pervasive, hydrothermal sulfidation (mainly arsenopyrite) of the Fe-rich bands of the São Bento BIF. Auriferous, sulfide- and quartz-rich zones represent proximal alteration zones. They are enveloped by ankerite-dominated haloes, which reflect progressive substitution of siderite and magnetite within the BIF by ankerite and pyrrhotite, respectively. The São Bento BIF was intensely and extensively deformed, first into open, upright folds that evolved into tight, asymmetric, isoclinal folds. The inverse limb of these folds attenuated and gave way to sheath folds and the establishment of ductile thrusts. Mineralized horizons at São Bento result from early structural modifications imposed by major transcurrent and thrusts faults, comprising the Conceição, Barão de Cocais and São Bento shear zones. Dextral movement on the SW–NE-directed Conceição shear zone may have generated splays at a compressional side-stepping zone, such as the São Bento shear zone, which is the structural locus for the São Bento gold mineralization. Relaxation of the Conceição shear zone under more brittle conditions resulted in the development of dilatational zones where gold–sulfide–quartz veins formed. These structures are considered to have been generated in the Archean. Geochronological data are scarce, with Pb–Pb analyses of refractory arsenopyrite and pyrite from bedded and remobilized ore plotting on a single-stage growth curve at 2.65 Ga. A later compressional, ductile deformation of unknown age overprinted, rotated and flattened the original, N60E-directed structure of the whole rock succession, with development of planar and linear fabrics that appear similar to Proterozoic-aged structures. Fluid inclusion studies indicate low salinity, aqueous fluids, with or without CO2 and/or CH4, with extremely variable CO2/CH4 ratios, of probable metamorphic origin. Fluid evolution shows a paragenetic decrease in the carbonic phase from 10–15% to 5%, and increase in the H2O/(CO2 + CH4) and CO2/CH4 ratios, suggesting important interaction with carbonaceous sediment. Trapping conditions indicate a temperature of 300 °C at 3.2 kbar.  相似文献   

9.
The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be divided into carbonatic, micaceous and quartzose types. The carbonatic lapa seca is subdivided into gray and brown subtypes. Non-mineralized, gray carbonatic lapa seca forms the hanging wall to the orebodies, and is interpreted as the product of extreme CO2 metasomatism during hydrothermal alteration. This dolomitic lapa seca ranges in composition from relatively pure limestone and dolomite to silty limestone and dolomite. The brown carbonatic and micaceous lapa secas are the host rocks to gold. These units are interpreted to correspond to the sheared and hydrothermal products of metamorphosed volcaniclastic and/or volcanic rocks of varying composition from dacitic to andesitic, forming various types of schists and phyllites. The high-grade, massive sulfide orebodies occur at the base of the gray carbonatic lapa seca. Both disseminated mineralization and quartz veins are hosted by micaceous lapa seca. The data are consistent with a model of epigenetic mineralization for the lapa seca, from a hydrothermal fluid derived in part from the Archean basement or older crust material.  相似文献   

10.
The Quadrilátero Ferrífero is a classic gold province on a global scale, with hundreds of individual gold occurrences in the Archean greenstone belt comprising the Rio das Velhas Supergroup. There are numerous small gold deposits, including Faria, Esperança III, Bicalho, Bela Fama, Juca Vieira, Brumal, Boa Vista, Fernandes, Moita, Roça Grande, Bico de Pedra and Pari, as well as the world-class deposits of Morro Velho and Cuiabá. All these deposits, whether large or small, are structurally controlled and related to either shear zones or folds. Extensive down-plunge continuity is a consistent feature of the deposits. In the Rio das Velhas greenstone belt, six main styles of gold mineralization are recognized. These are deposits hosted within: (1), Lapa seca (e.g., Morro Velho, Bicalho, Bela Fama), (2), Banded iron formations (e.g., Cuiabá, São Bento, Raposos, Faria, Brumal, Roça Grande), (3), Quartz veins (e.g., Juca Vieira, Fernandes), (4), Disseminated sulfides with quartz veinlets (e.g., Moita), (5), Amphibolites (e.g., Pari), and (6), Disseminated to massive base-metal sulfides (e.g., Bico de Pedra). The first four types of deposits are epigentic (orogenic) gold deposits, similar to those found in greenstone belts worldwide. The last two are unusual types of gold deposit, peculiar to the Quadrilátero Ferrífero. Bico de Pedra is a polymetallic Au–Ag–Zn–Pb–Cu deposit related to an aplite intrusion, whereas Pari is a stratiform Au-bearing-banded iron formation metamorphosed to epidote–amphibolite metamorphic facies.  相似文献   

11.
The role of hydrothermal fluids in assisting the activity of strike-slip faults is investigated using a range of new geological, geophysical, and geochemical data obtained on the Argentat fault, Massif Central, France. This fault zone, 180-km-long and 6 to 8 km-width, has experienced coeval intense channeling of hydrothermal fluids and brittle deformation during a short time span (300–295 Ma). According to seismic data, the fault core is a 4-km-wide, vertical zone of high fracture density that rooted in the middle crust (~ 13 km) and that involved fluids in its deeper parts (9–13 km depth). If stress analyses in the fault core and strain analyses in the damage zone both support a left-lateral movement along the fault zone, it is inferred that hydrothermal fluids have strongly influenced fault development, and the resulting fault has influenced fluid flow. Fluid pressure made easier fracturing and faulting in zones of competent rocks units and along rheological boundaries. Repeated cycles of increase of fault-fracture permeability then overpressure of hydrothermal fluids at fault extremity favored strong and fast development of the crustal-scale strike-slip fault. The high permeability obtained along the fault zone permitted a decrease of coupling across the weak fault core. Connections between shallower and lower crustal fluids reservoirs precipitate the decrease of fault activity by quartz precipitation and sulfides deposition. The zones of intense hydrothermal alteration at shallows crustal levels and the zones of fluid overpressure at the base of the upper crust both controlled the final geometry of the crustal-scale fault zone.  相似文献   

12.
The Araçuaí orogen is the Brazilian counterpart of the Araçuaí‐West Congo orogenic system (AWCO), a component of the Ediacaran‐Cambrian orogenic network formed during the amalgamation of West Gondwana. The northwestern portion of the Araçuaí orogen is dominated by a succession of metasedimentary rocks made up of Meso‐ to Neoproterozoic rift, passive margin and syn‐orogenic sequences, locally intruded by post‐collisional granites. These sequences are involved in three distinct tectonic units, which from west to east are: the southern Espinhaço fold‐thrust system (SE‐thrust system), the normal‐sense Chapada Acauã shear zone (CASZ) and the Salinas synclinorium. Three deformation phases were documented in the region. The first two phases (D1 and D2) are characterized by contractional structures and represent the collisional development stage of the orogen. The third phase (D3) is extensional and currently viewed as a manifestation of orogenic collapse of the system. The distribution of the metamorphic mineral assemblages in the region characterizes two metamorphic domains. The M‐Domain I on the west, encompassing the SE‐thrust system and the CASZ, is marked by a syn‐collisional (syn‐D1) Barrovian‐type metamorphism with P–T conditions increasing eastwards and reaching ~8.5 kbar at ~650°C between 575 and 565 Ma. The M‐Domain II comprises the Salinas synclinorium in the hangingwall of the CASZ, and besides the greenschist facies syn‐collisional metamorphism, records mainly a Buchan‐type metamorphic event, which took place under 3–5.5 kbar and up to 640°C at c. 530 Ma. The northwestern Araçuaí orogen exhibits, thus, a paired metamorphic pattern, in which the Barrovian and Buchan‐type metamorphic domains are juxtaposed by a normal‐sense shear zone. Lithospheric thinning during the extensional collapse of the orogen promoted ascent of the geotherms and melt generation. A large volume of granites was emplaced in the high grade and anatectic core of the orogen during this stage, and heat advected from these intrusions caused the development of Buchan facies series over a relatively large area. Renewed granite plutonism, hydrothermal activities followed by progressive cooling affected the system between 530 and 490 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号