首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hall effect on the unsteady hydromagnetic free-convection resulting from the combined effects of thermal and mass diffusion of an electrical-conducting liquid through a porous medium past an infinite vertical porous plate in a rotating system have been analysed. The expressions for the mean velocity, mean skin friction, and mean rate of heat transfer on the plate are derived. The effects of magnetic parameterM, Hall parameterm, Ekman numberE, and permeability parameterK * on the flow field are discussed with the help of graphs and tables.Nomenclature C p specific heat at constant pressure - C the species concentration inside the boundary layer - C w the species concentration at porous plate - C the species concentration of the fluid at infinite - C dimensionless species concentration - D chemical molecular diffusivity - E Ekman number - Ec Eckert number - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - H 0 applied magnetic field - (J x, Jy, Jz) components of current density - M magnetic parameter - m Hall parameter - P Prandtl number - q m mean rate of heat transfer - Sc Schmidt number - t time - t dimensionless time - T temperature of fluid - T w temperature of the plate - T temperature of fluid at infinite - T dimensionless temperature - (u, v, w) components of the velocityq - w 0 suction velocity - (x, y, z) Cartesian coordinates - z dimensionless coordinate normal to the plate Greek symbols coefficient of volume expansion - * coefficient of thermal expansion with concentration - frequency - dimensionless frequency - k thermal conductivity - K * permeability parameter - dinematic viscosity - density of the fluid in the boundary layer - coefficient of viscosity - e magnetic permeability - angular velocity - electrical conductivity of the fluid - m mean skin friction - mn mean skin friction in the direction ofx - mv mean skin friction in the direction ofy  相似文献   

2.
The synthetic Voigt profile of the following transitions (v=0,v=0), (v=0,v=1), (v=1,v=1), (v=1,v=0) have been computed for different concentrations and temperatures of CO and compaed to the measured intensities of the UV sunspot spectrum by a high resolution spectrograph. From this comparison the solar minimum temperature has been determined.  相似文献   

3.
In the present paper, the effects of free convection currents and the viscous dissipation on the unsteady flow of an electrically conducting and viscous incompressible fluid around an uniformly accelerated vertical porous plate subjected to a suction or injection velocity inversely proportional to the square root of time, in presence of a transverse magnetic field, have been investigated. Analytical solutions for the velocity and the temperature distributions, the skin-friction and the rate of heat transfer are obtained for small magnetic parameterM. During the course of discussion the effects of the Grashof number Gr, the Eckert number Ec, the suction/injection parametera have been considered for unit value of the Prandtl number Pr.Nomenclature a suction/injection parameter - C p specific heat at constant pressure - B 0 magnetic induction - g acceleration due to gravity - Gr Grashof number (g(T w –T )/U 0 3 ) - K thermal conductivity - M magnetic field parameter (B 0 2 /U 0 2 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T w temperature of the plate - T temperature of the fluid at infinity - t time - t dimensionless time (tU 0 2 /) - u velocity of the fluid - u non-dimensional velocity (u/U 0) - U velocity of the plate - U dimensionless velocity of the plate (U/U 0) - U 0 reference velocity - v 0 suction velocity - v 0 non-dimensional suction velocity (v 0/U 0)=at –1/2 - Ec Eckert number ((U 0)2/3/C p(T w –T )) - T dimensionless temperature of the fluid near the plate ((T–T )/(T w –T )) - x, y coordinates along and normal to the plate - x, y dimensionless coordinates (y=yU 0/) - kinematic viscosity - coefficient of volume expansion - electric conductivity of the fluid - y/2t 1/2 - density of the fluid - skin-friction - dimensionless skin-friction - q rate of heat transfer - q non-dimensional rate of heat transfer - coefficient of viscosity - e magnetic permeability On leave of absence from Department of Mathematics, University of Dhaka, Bangladesh  相似文献   

4.
We report here on high angular resolution observations of solar noise storm sources at a frequency of 75 MHz. The data for the study were obtained at the Gauribidanur Radio Observatory (long.: 77°2612 E, lat.: 13°3612 N) about 100 km north of Bangalore, India, during the solar eclipse of 24 October 1995. Our main conclusion is that there are structures of angular size 2.5 arc min in the outer solar corona.  相似文献   

5.
Homann  T.  Kneer  F.  Makarov  V. I. 《Solar physics》1997,175(1):81-92
This contribution deals with the properties of small-scale magnetic elements at the polar caps of the Sun. Spectro-polarimetric observations, obtained with high spatial resolution with the Gregory Coudé Telescope at the Observatorio del Teide on Tenerife, were analysed. We find, though with limited data sets, that polar faculae differ in two aspects from faculae of the network in non-active regions near the equator (equatorial faculae): (1) Polar faculae appear to have the same magnetic polarity as the general polar magnetic field. Presumably, the latter is rooted in the small-scale faculae. The equatorial faculae show both magnetic polarities. (2) Polar faculae, with a size of 3.5 ± 1.3, are larger than equatorial faculae with 2.1 ± 0.4. Yet as for equatorial faculae, polar faculae possess kilogauss magnetic fields.  相似文献   

6.
Surface photometry of the UV continuum galaxy NGC 838 has been carried out in theB, V system using photographic plates obtained with the 74 Kottamia telescope, Egypt. Isophotes, luminosity profiles, integrated photographic magnitudes, effective diameters and other photometric parameters are derived.The photoelectrically calibrated total apparent magnitudes areB T =13.57 with maximum diameters 1.57×1.34 (at threshold m =27.7 mag.//) andV T =12.91 with maximum diameters 1.54×1.32 (at threshold m =27.7 mag./). The integrated colour index(B–V) T =0.66 and the effective surface brightness e (B=19.0 mag./) and e (V=19.7 mag./. The major axis is at position angle =85°±1°.The nucleus of NGC 838 is quite blue (integrated colour(B–V)=0.41 forr *<0.1) compared to normal galaxies while the colour becomes redder from the nucleus outwards. The UV excess, H emission and radio continuum emission previously observed from this galaxy by other investigators may be attributed to a recent burst of star formation in the nucleus of the galaxy of duration slightly greater than 2×107 yr.  相似文献   

7.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

8.
Many trajectories of the third body are integrated numerically in a modified elliptical restricted three body problem (ERTBP), in which the eccentricity, e, of the orbit of the second primary varies sinusoidally with time. It is found that, in the case of the 2:1 resonance, the introduction of the time variability of e modifies significantly the behaviour of the trajectories of the third body. In particular their osculating eccentricity e, present the following two notable features: (a) In all cases it shows a definite chaotic variation, which appears at significantly shorter time-scales than the one found by Wisdom in the e = constant case. (b) In many cases it shows a significant increase, up and beyond the (critical) value e crit = 0.52. As a result the third body approaches the first primary at distances smaller than 0.29 (where by we denote the semi-major axis of the trajectory of the second primary around the first), which in the actual Sun-Jupiter-asteroid problem corresponds to the semi-major axis of Mars. Our result might be of interest in the context of explaining the Kirkwood gaps at the resonances where the osculating eccentricity of asteroid trajectories calculated in the classical (e = constant) ERTBP does not reach Mars crosser values.  相似文献   

9.
Interstellar reddening as a function of distance in the direction of the globular cluster M71 is determined by two-dimensional quantification of 96 foreground stars observed in the Vilnius photometric system. In concentric areas with the radii 30 and 10 centered on the cluster the reddening shows the same variations ranging fromE B-V=0.12 to 0.32. The cluster stars are likely to have variable extinction too, at least in the outer regions of the cluster.  相似文献   

10.
Wan, Wilson and Sen (1986) have examined the scope of Modified Spherical Harmonic Method in a plane medium scattering anisotropically. They have used the phase functionp(µ, µ) = 1 +aµµ. In this paper, the Transfer Equation has been solved by the Modified Spherical Harmonic Method using the phase functionp(µ, µ) = 1 + 1 P 1(µ)P 1(µ) + 2)P 2(µ)P 2(µ) and a few sets of numerical solution have been predicted for three different cases.  相似文献   

11.
Parfinenko  L.D. 《Solar physics》2003,213(2):291-299
The CCD spectroheliograph-magnetograph is a focal-plane ancillary instrument for the Pulkovo horizontal solar telescope ACU-5. The instrument is placed at an exit port of an isothermal high-resolution diffraction-grating spectrograph. A modified Leighton optical scheme for registration of sunspot magnetic fields is used. The instrument provides FITS-format digital video maps of radial velocities, magnetic fields, and spectroheliograms in any line of the spectral region 3900–11000 Å. The time to obtain one video map of size 91×154 is equal to 10.24 s. The angular resolution of the instrument is 0.8; spectral resolution is 0.01–0.03 Å. Since 1996 the Pulkovo CCD spectroheliograph-magnetograph has been used to obtain high spatial and temporal resolution observations of oscillations of radial velocities and magnetic fields in the photospheric layers of sunspots.  相似文献   

12.
Unsteady two-dimensional hydromagnetic flow of an electrically conducting viscous incompressible fluid past a semi-infinite porous flat plate with step function change in suction velocity is studied allowing a first order velocity slip at the boundary condition. The solution of the problem is obtained in closed form and the results are discussed with the aid of graphs for various parameters entering in the problem.Notations B intensity of magnetic field - H magnetic field parameter,H=(M+1/4)1/2–1/2 - h rarefaction parameter - L 1 slip coefficient; ;I, mean free path of gas molecules;f, Maxwell's reflection coefficient - M magnetic field parameter - r suction parameter - t time - t dimensionless time - u velocity of the fluid - u dimensionless velocity of the fluid - U velocity of the fluid at infinity - v suction velocity - v 1 suction velocity att<=0 - v 2 suction velocity att>0 - x distance parallel to the plate - y distance normal to the plate - y nondimensional distance normal to the plate - v kinematic viscosity - electric conductivity of the fluid - density of the fluid - shear stress at the wall - nondimensional shear stress at the wall - erf error function - erfc complementary error function  相似文献   

13.
Zusammenfassung Der offene Sternhaufen NGC 5617 wurde nach dem Streifenverfahren auf Karten von photographischen Aufnahmen verschiedener Belichtungszeiten mit dem 1m-Schmidt-Teleskop des European Southern Observatory in Chile untersucht. Der Haufen enthält etwa 460 Sterne mit einer Gesamtmasse von 700 . Der Radius beträgt 3.7 pc, die Sterndichte im Zentrum 50 Sterne pc–3, und die mittlere Sterngeschwindigkeit 0.89 km s–1. Auf den länger belichteten Aufnahmen taucht im Abstand von 12.3 in Richtung SSE ein unbekannter offener Sternhaufen auf, der einen Radius von etwa 4.3 hat und etwa 150 Sterne bis zur GrenzgrößeV19m enthält.
The open cluster NGC 5617 was investigated by the strip method on charts of photographs with different exposure times taken with the 1-m Schmidt telescope of the European Southern Observatory. The cluster contains about 460 stars with a total mass of 700 . Its radius amounts to 3.7 pc; the star density in the center is 50 stars pc–3; and the mean stellar velocity, 0.89 km s–1. On longerexposed photographs at a distance of 12.3 in direction to SSE an unknown open star cluster becomes visible with a radius of 4.3, containing about 150 stars to the limiting magnitudeV19m.


Mitteilungen Serie A.  相似文献   

14.
TheK p-indices measured at Misallat station [ø = 29°45 N; = 30°54 E] during the period 1958–1989, have been compared with the data of two geomagnetic stations; one of them has similar longitude as Misallat and the second has almost similar latitude. The spectra of daily and hourly data of the three stations are compared together to define the latitude and longitude-effects on the detected periodicities. Daily periodicities ofK p-index activities at the values 32.7, 21.2, 12.9, 11.6 and 9.2 days have been obtained to be common in the spectra of the three stations. The existence of 5-days periodicity in these stations has also been detected.  相似文献   

15.
This work contains a transformation of Hill-Brown differential equations for the coordinates of the satellite to a type which can be integrated in a literal form using an analytical programming language. The differential equation for the parallax of the satellite is also established. Its use facilitates the computation of Hill's periodic intermediary orbit of the satellite and provides a good check for the expansion of the coordinates and frequencies. The knowledge of the expansion of the parallax facilitates the formation of differential equations for terms with a given characteristic. These differential equations are put into a form which favors the solution by means of iteration on the computer. As in the classical theory we obtain the expansions of the coordinates and of the parallax in the form of trigonometric series in four arguments and in powers of the constants of integration. We expand the differential operators into series in squares of the constants of integration. Only the terms of order zero in these expansions are employed in the integration of the differential equations. The remaining terms are responsible for producing the cross-effects between the perturbations of different order. By applying the averaging operator to the right sides of the differential equations we deduce the expansion of the frequencies in powers of squares of the constants of integration.Basic Notations f the gravitational constant - E the mass of the planet - M the mass of the satellite - t dynamical time - x, y, z planetocentric coordinates of the satellite - u x+y–1 - s x–y–1 - the planetocentric distance of the satellite - w 1/ - 0 the variational part of - w 0 the variational part ofw, - n the mean daily sidereal motion of the satellite - a the mean semi-major axis of the satellite defined by means of the Kepler relation:a 3 n 2=f(E+M) - a the mean semi-major axis defined as the constant factor attached to the variational solution - e the constant of the eccentricity of the satellite - the sine of one half the orbital inclination of the satellite relative to the orbit of the sun - c(n–n) the anomalistic frequency of the satellite - c 0 the part ofc independent frome,e, and - g(n–n) the draconitic frequency of the satellite, - g 0 the part ofg independent frome,e, and - exp (n–n)t–1 - D d/d - e the eccentricity of the solar planetocentric orbit - a the semi-major axis of the solar orbit - n the mean daily motion of the sun in its orbit around the planet - m n/(n–n) - a/a-the parallactic factor - the disturbing function  相似文献   

16.
Xu  Feng 《Solar physics》2002,206(2):243-248
Light refraction by the Sun's atmosphere is calculated.As detected from the Earth, the refraction can deflect a light ray emitted from the Sun's limb by 13 or a starlight ray grazing the solar limb by 26, an effect 15 times larger than the gravitational deflection.  相似文献   

17.
Two-dimensional unsteady free convection and mass transfer, flow of an incompressible viscous dissipative and electrically conducting fluid, past an infinite, vertical porous plate, is considered, when the flow, is subjected in the action of uniform transverse magnetic field. The magnetic Reynolds number is taken to be small enough so that the induced magnetic field is negligible. The solution of the problem is obtained in the form of power series of Eckert numberE, which is very small for incompressible fluids. Analytical expressions for the velocity field and temperature field are given, as well as for the skin friction and the rate of heat transfer for the case of the mean steady flow and for the unsteady one. The influence of the magnetic parameter,M, modified Grashof numberG c , Schmidt numberS c and frequency , on the flow field, is discussed with the help of graphs, when the plate is being cooled, by the free convection currents (G r ,E>0), or heated (G r ,E<0). A comparative study with hydrodynamic case (M=0) and the hydromagnetic one (M0) is also made whenever necessary.List of symbols B0 applied magnetic field - |B| amplitude of the skin friction - C concentration inside the boundary layer - C concentration in the free stream - C w concentration at the porous plate - C p specific heat at constant pressure - D diffusion coefficient - E Eckert number - g x acceleration due to gravity - G c modified Grashof number - G r Grashof number - M magnetic parameter - N u Nusselt number - P Prandtl number - |Q| amplitude of the rate of heat transfer - S c Schmidt number - T temperature of the fluid - T w temperature of the plate - T temperature of the fluid in the free stream - T r ,T i fluctuating parts of the temperature profile - u, v velocity components in thex, y directions - u dimensionless velocity in thex direction - u 0 mean steady velocity - u 1 unsteady part of the velocity - u r ,u i fluctuating parts of the velocity profile - U dimensionless free stream volocity - U 0 mean free stream velocity - v 0 suction velocity - x, y co-rodinate system Greek Symbols phase angle of the skin-friction - coefficient of volume expansion - * coefficient of expansion with concentration - phase angle of the rate of heat transfer - dimensionless co-ordinate normal to the plate - dimensionless temperature - 0 mean steady temperature - 1 unsteady part of temperature - k thermal conductivity - v kinematic viscocity - density of fluid in the boundary layer - density of fluid in the free stream - electrical conductivity of the fluid - skin friction - 0 mean skin friction - frequency - dimensionless frequency  相似文献   

18.
An account is given of the results of a comparison of existing basic selenodetic systems in the equatorial zone of the Moon together with plan and altitude data, which have been provided by means of a specially worked out method, based on the use of the LAC charts of the Moon (scale 1:1000000), and which does not require the presence of common catalogued reference points. It is shown that systematic differences of the form () for different catalogues are, on the whole, relatively small and do not exceed 2. Systematic differences of the form () have a minimum in the region = ± 20° and significantly increase towards the edges of the visible disk, where they may attain a value of 6 between catalogues. Random errors in latitude have on the whole, a similar behaviour in different catalogues, being practically independent of longitude and not exceeding 3. Random errors in longitude significantly increase towards the limb regions in all the studied catalogues, and may reach values of 6 to 8. Author's estimates of the accuracy of absolute heights in selenodetic catalogues is not always sufficiently precise; in certain cases it was found that the accuracy was underestimated by a factor of one and a half. The data on relative heights in the LAC charts are expressed with a vertical step of 300 m, errors in these values are of the order of 250 m for each step in height. As a result of the comparison a set of better points has been obtained forming a catalogue which may be referred to as LPL. The selection was made on the basis of magnitude and character of both the systematic and random errors.  相似文献   

19.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

20.
We start from a reference frame for which the pseudo-Euclidean geometry holds, i.e., all laws in have the form of special relativity. The geometry of a reference frame , moving with constant velocity with regard to , is received by using the well-known Galilei-transformation for the covariant space-time vector. In the geometry is different from the pseudo-Euclidean one, i.e., the principle of special relativity does not hold. The velocity of light in is direction dependent but the null result of the Michelson-Morley experiment is received. Several useful transformation formulae are given. In particular, we obtain the Marinov-transformation as transformation from the frame to , and conversely. Maxwell's equations and the equations of motion in the reference frame are given. The theory is applied to some examples, e.g., the Doppler effect, the Fizeau experiment, the field of a charged particle, etc. The method can be generalized to an accelerated reference frame .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号