首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A perturbation method has been applied for the determination of the frequencies of the linear and adiabatic oscillations of a gaseous polytropic configuration pervaded by a purely toroidal magnetic field. The influence of a toroidal magnetic field on the frequencies of the different types of spheroidal oscillation modes is discussed.  相似文献   

2.
A generalization of the perturbation method is applied to the problem of the radial and the non-radial oscillations of a gaseous star which is distorted by a magnetic field. An expression is derived for the perturbation of the oscillation frequencies due to the presence of a weak magnetic field when the equilibrium configuration is a spheroid. The particular application to the homogeneous model with a purely poloidal field inside, due to a current distribution proportional to the distance from the axis of symmetry, and a dipole type field outside is considered in detail. The main result is that the magnetic field has a large and almost stabilizing effect on unstableg-modes, particularly on higher order modes. With the considered magnetic field the surface layers appear to have a large weight.  相似文献   

3.
The frequencies of the linear and adiabatic oscillations of a gaseous polytrope with a poloidal magnetic field are determined with the aid of a perturbation method. The influence of the poloidal magnetic field on the different types of spheroidal oscillation modes is discussed. The poloidal magnetic field generally strengthens the stability of the oscillation modes and this effect is the largest in the case of the non-radialp-modes.  相似文献   

4.
The frequencies of the linear and adiabatic oscillations of Prendergast's model are determined with the aid of a perturbation method. The influence of the magnetic field on the frequencies of the different types of spheroidal oscillation modes is discussed.  相似文献   

5.
The minimum in the solar-activity cycle observed between Cycles 23 and 24 is generally regarded as being unusually deep and long. This minimum is being followed by a cycle with one of the smallest amplitudes in recent history. We perform an in-depth analysis of this minimum with helioseismology. We use Global Oscillation Network Group (GONG) data to demonstrate that the frequencies of helioseismic oscillations are a sensitive probe of the Sun’s magnetic field: The frequencies of the helioseismic oscillations were found to be systematically lower in the minimum following Cycle 23 than in the minimum preceding it. This difference is statistically significant and may indicate that the Sun’s global magnetic field was weaker in the minimum following Cycle 23. The size of the shift in oscillation frequencies between the two minima is dependent on the frequency of the oscillation and takes the same functional form as the frequency dependence observed when the frequencies at cycle maximum are compared with the cycle-minimum frequencies. This implies that the same near-surface magnetic perturbation is responsible. Finally, we determine that the difference in the mean magnetic field between the minimum preceding Cycle 23 and that following it is approximately 1 G.  相似文献   

6.
Nonradial oscillations of a partially degenerate standard model, approximating a class of low-mass stars, have been studied in the presence of a weak poloidal magnetic field. The magnetic field in the interior of the configuration is taken to be continuous across the equilibrium surface and is matched with an external dipole field. Using a variational formulation, corrections to the oscillation frequencies of the Kelvin mode have been found for different values of the central degeneracy. It has been noted that the effect of the magnetic field is to increase the frequency of nonradial (l=2) mode of pulsation.  相似文献   

7.
Equilibrium configuration of the upper Main-Sequence stars, with significant radiation pressure and having an interior magnetic field (matching with an external dipole field) has been cosidered. The structural parameters have been calculated for low and high magnetic fields by using a first-order perturbation method and a modified perturbation technique respectively. With the increase of radiation pressure, the star is seen to become more centrally condensed.  相似文献   

8.
First-order perturbation theory results for the changes in pulsation frequencies of a Cowling model star containing a magnetic field with both poloidal and toroidal components are presented. A toroidal field large enough to stabilize the poloidal field may reverse the sign of the frequency change caused by a purely poloidal field for some modes, including the fundamental radial mode.  相似文献   

9.
We investigate the effect of a strong large-scale magnetic field on the reflection of high-frequency acoustic modes in rapidly oscillating Ap stars. To that end, we consider a toy model composed of an isothermal atmosphere matched on to a polytropic interior and determine the numerical solution to the set of ideal magnetohydrodynamic equations in a local plane-parallel approximation with constant gravity. Using the numerical solution in combination with approximate analytical solutions that are valid in the limits where the magnetic and acoustic components are decoupled, we calculate the relative fraction of energy flux that is carried away in each oscillation cycle by running acoustic waves in the atmosphere and running magnetic waves in the interior. For oscillation frequencies above the acoustic cut-off, we show that most energy losses associated with the presence of running waves occur in regions where the magnetic field is close to vertical. Moreover, by considering the depth dependence of the energy associated with the magnetic component of the wave in the atmosphere we show that a fraction of the wave energy is kept in the oscillation every cycle. For frequencies above the acoustic cut-off frequency, such energy is concentrated in regions where the magnetic field is significantly inclined in relation to the local vertical. Even though our calculations were aimed at studying oscillations with frequencies above the acoustic cut-off frequency, based on our results we discuss what results may be expected for oscillations of lower frequency.  相似文献   

10.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

11.
We study the effect of the magnetic field geometry on the oscillation spectra of strongly magnetized stars. We construct a configuration of magnetic field where a toroidal component is added to the standard poloidal one. We consider a star with a type I superconductor core so that both components of the magnetic field are expelled from the core and confined in the crust. Our results show that the toroidal contribution does not influence significantly the torsional oscillations of the crust. On the contrary, the confinement of the magnetic field in the crust drastically affects the torsional oscillation spectrum. A comparison with estimations for the magnetic field strength, from observations, excludes the possibility that magnetars will have a magnetic field solely confined in the crust, that is, our results suggest that the magnetic field in whatever geometry has to permeate the whole star.  相似文献   

12.
The fundamental frequencies of the non-radial mode of oscillation belonging to the second harmonic (l=2) of magnetically distorted polytropic gas spheres are evaluated in the second approximation by a variational method. The magnetic field is assumed to have both the toroidal and the poloidal components. We find that the frequencies of oscillation are increased due to the presence of the magnetic field and that these depend only slightly on the value of , the ratio of the specific heats. We have also determined the value of <1+1/n for the mode of oscillation which exhibits convective instability. This value is lower than the one which is obtained in the absence of a magnetic field.  相似文献   

13.
This study deals with the singular character of the perturbation introduced into the eigenvalue problem of the linear and adiabatic oscillations of a gaseous configuration by a magnetic field that is non-zero on the boundary surface of the configuration. This singular character implies that a regular perturbation scheme cannot yield uniformly valid expansion for the eigenfunctions.This investigation considers the application of the Method of Matched Asymptotic Expansions (M.M.A.E.) to the latter singular perturbation problem in order to obtain uniformly valid expansions for the eigenfunctions and first-order expressions for the eigenfrequencies. As an illustrative example, the M.M.A.E. is applied to the eigenvalue problem of the linear, radial, and adiabatic oscillations of a homogeneous cylindrical plasma with a constant longitudinal magnetic field.  相似文献   

14.
Gore  Alan 《Solar physics》1997,171(2):239-255
We have investigated the normal modes of subadiabatic and superadiabatic polytropic atmospheres with constant vertical magnetic field and constant thermal conductivity. In the subadiabatic case, we found the lowest, third and fifth modes were always damped, however overstability was detected in the second and fourth modes at low values of the background magnetic field. In the superadiabatic case, instability was detected in several modes, however the effect of the change from sub to superadiabatic had little effect on the frequencies of the modes. The introduction of a variety of boundary conditions varying the degree of thermal and mechanical isolation altered the decay rates of the modes from moderately damped with rigid boundary conditions toward zero decay with the less restrictive conditions, again with essentially no effect on the oscillation frequencies. In both types of atmosphere, modes with periods in the 3-min and 5-min bands were present with magnetic fields around 3000 G, whereas only the 5-min modes were present at 2000 G.  相似文献   

15.
One of the possible magnetic field effects on the stellar pulsations is known to be a splitting in the observed frequencies. Using this knowledge in the solar convection zone, there are two aims in this work Considering the Sun as an incompressible fluid, our first objective was to investigate the variation of the physical parameters in the 30% outermost convective solar layer, during a pulsation period. The second purpose was to calculate, by means of the spherical harmonics, the shifts on the low-l p-mode frequencies which could be caused by the presence of the magnetic field in the Sun. The first order perturbation approximation was used in order to calculate analytically the resulting frequency shifts and the small perturbations on the magnetic field, as well as the physical parameters, such as density, pressure and temperature, of a Standard Solar Model excluding both rotation and magnetic field (Christensen-Dalsgaard et al., 1996) in the unperturbed equilibrium case.  相似文献   

16.
The inverse scattering problem for reconstruction of the structure of reflecting potential from the observed frequency dependence of the phase shift of reflected acoustic waves is considered. The linearized formulation of the ill-posed inverse problem is used, which is solved using a perturbation technique. The potential perturbation of the standard model as a combination of five B-splines leads to a constructive solution of the discrepancy problem between the observational and theoretical frequencies of the 5-min oscillations. The discrepancy is reduced by an order of magnitude. The corresponding change of the shape of the reflecting potential is interpreted as a requirement of a general increase of convection efficiency in the standard solar model. In this way, the agreement of the oscillation frequencies of high degree is also improved.  相似文献   

17.
The temporal and spatial distribution of the magnetic field and density of non-thermal electrons in the source of solar microwave bursts are studied by the gyrosynchrotron model, using the observations of the high-resolution spectrometer at the Owens Valley solar interferometer. The general results are consistent with the previous knowledge about these parameters. For example, the magnetic field decreases with increasing radio flux, and the distribution gradually flattens, so that the non-uniformity of the magnetic field decreases gradually, meanwhile the density increases, and the nonthermal electrons propagate from lower to higher levels. It is interesting that the oscillation of the density is detected at lower frequencies, and there is a correlation between the density and the energy index. The main purpose of this paper is to develop a diagnostic method for the basic plasma parameters in solar flares.  相似文献   

18.
Strong magnetic fields in relativistic stars can be a cause of crust fracturing, resulting in the excitation of global torsional oscillations. Such oscillations could become observable in gravitational waves or in high-energy radiation, thus becoming a tool for probing the equation of state of relativistic stars. As the eigenfrequency of torsional oscillation modes is affected by the presence of a strong magnetic field, we study torsional modes in magnetized relativistic stars. We derive the linearized perturbation equations that govern torsional oscillations coupled to the oscillations of a magnetic field, when variations in the metric are neglected (Cowling approximation). The oscillations are described by a single two-dimensional wave equation, which can be solved as a boundary-value problem to obtain eigenfrequencies. We find that, in the non-magnetized case, typical oscillation periods of the fundamental     torsional modes can be nearly a factor of 2 larger for relativistic stars than previously computed in the Newtonian limit. For magnetized stars, we show that the influence of the magnetic field is highly dependent on the assumed magnetic field configuration, and simple estimates obtained previously in the literature cannot be used for identifying normal modes observationally.  相似文献   

19.
Carl A. Rouse 《Solar physics》1986,106(2):205-216
The high-Z core (HZC) model of the Sun, supported in Rouse (1985) by superior agreements of nonradial g-mode periods of oscillation with long period observations, is used to calculate frequencies of oscillation in the five-minute band (5MB). Allowing for the fact that the present HZC model profile does not include an upper photosphere and self-consistent chromosphere, the HZC model of the Sun is also supported by the very good agreements of the 5MB nonradial frequencies of oscillation with observations for HZC l degrees 0 to 19 and orders n 20, and the good agreement of the HZC purely radial frequencies of oscillation with about the same n-orders with observations previously identified as l = 0 oscillations. Two important aspects of these agreements are (1) the nonradial frequencies were calculated with the equations that neglect the gravitational perturbation (the Cowling approximation), and (2) the radial frequencies were calculated with the equation that includes the gravitational perturbation. The present agreements suggest that for solar-type stars, the gravitational perturbation may not affect the nonradial p-modes of oscillation as much as it affects the radial modes and the nonradial g-modes. More research will be performed.  相似文献   

20.
The Kelvin modes of oscillation of a selfgravitating, homogeneous fluid spheroid in hydrostatic equilibrium with a poloidal magnetic field inside and a dipole type field outside, are studied, using a variational principle. On the assumption that the eccentricitye of the spheroid is small, the frequencies of oscillation are calculated to the first order ine 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号