首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant degree of mass segregation inconsistent with the effects of standard two-body relaxation has been observed in a number of young star clusters. In this paper we present the results of a survey of N-body simulations aimed at exploring the origin and the dynamical evolution of young mass-segregated star clusters. Our simulations show that large segregated clusters can form from the merger of small clumps that are either initially segregated or in which segregation is produced before the merger is complete; the large cluster produced at the end of the merger process inherits the progenitor clumps’ segregation. We show that, in a young mass-segregated cluster, the effect of early mass loss associated with stellar evolution is, in general, more destructive than for an unsegregated cluster with the same density profile, and leads to shorter lifetimes, a faster initial evolution towards less-concentrated structure and a faster flattening of the stellar initial mass function.  相似文献   

2.
We present grids of stellar models and their associated oscillation frequencies that have been used by the CoRoT Seismology Working Group during the scientific preparation of the CoRoT mission. The stellar models have been calculated with the CESAM stellar internal structure and evolution code while the oscillation frequencies have been obtained from the CESAM models by means of the ADIPLS adiabatic oscillation programme. The grids cover a range of masses, chemical compositions and evolutionary stages corresponding to those of the CoRoT primary targets. The stellar models and oscillation frequencies are available on line through the Evolution and Seismic Tools Activity (ESTA) web site.  相似文献   

3.
Issues concerning the structure and evolution of core collapse progenitor stars, and stellar evolution in general, are discussed with an emphasis on interior evolution. We discuss some recent results that address quantifying the uncertainties inherent in modern stellar evolution calculations, and we describe a research effort aimed at investigating the transport and mixing processes associated with stellar turbulence, which is arguably the greatest source of uncertainty in supernova progenitor structure, besides mass loss, at the time of core collapse. We highlight the important role played by precision observations of stellar parameters in constraining theoretical models, as well as the physical insight that can be garnered from three-dimensional hydrodynamic simulation.  相似文献   

4.
We have analyzed the formation, structure, and dynamical evolution of the population of stars that escaped from open clusters by numerical simulations using S. Aarseth’s modified NBODY6 code. In the Galactic tidal field, the population of stars that escaped from a cluster is shown to be elongated along the orbit of the cluster symmetrically about its core in the form of stellar tails of increasing sizes. We analyze the parameters of stellar tails as a function of such initial simulation conditions as the number of stars, the cluster density, the eccentricity of the Galactic cluster orbit in the plane of the Galactic disk, and the z velocity component. As a result, we constructed a grid of model stellar tails of open clusters. The grid includes such time-dependent parameters of the stellar tails as the length, the cross section, the number of stars, the velocity distribution, etc. Our simulations allow us to clarify the origin of moving clusters and stellar streams and to assess the role of star clusters in forming the stellar velocity field in the solar neighborhood.  相似文献   

5.
Via a study of the evolutionary tracks of 3∼10 M stars on the Hertzsprung-Russell diagram, the variations of the energy, density, temperature at the peak of helium-shell burning, ratio of surface luminosity of helium shell to stellar surface luminosity as well as the stellar radius are analyzed. Then the demarcation point of medium-mass stars in the evolution from early AGB stars to thermally pulsing AGB stars on the HR diagram is determined, and for 119 carbon stars our analysis agrees rather well with observation. At the same time the following is suggested. After arriving at this demarcation point in stellar evolution, in the formula of the loss of stellar wind material it is probably needed to introduce a quantity which is not concerned with the surface luminosity, but it dominates the formation of super stellar wind. On this basis and via the analysis of the structure and evolution of 5 M stars as well as the rate of mass loss of stellar wind, it is found that the effect of turbulent pressure on the mass loss of stellar wind in the stage of thermally pulsing AGB stars is rather great, hence the turbulent pressure of thermally pulsing AGB stars cannot be overlooked. Furthermore, the physical factors which possibly affect the matter loss of the stellar winds of thermally pulsing AGB stars are suggested.  相似文献   

6.
The dynamical evolution of small stellar groups composed of N=6 components was numerically simulated within the framework of a gravitational N-body problem. The effects of stellar mass loss in the form of stellar wind, dynamical friction against the interstellar medium, and star mergers on the dynamical evolution of the groups were investigated. A comparison with a purely gravitational N-body problem was made. The state distributions at the time of 300 initial system crossing times were analyzed. The parameters of the forming binary and stable triple systems as well as the escaping single and binary stars were studied. The star-merger and dynamical-friction effects are more pronounced in close systems, while the stellar wind effects are more pronounced in wide systems. Star-mergers and stellar wind slow down the dynamical evolution. These factors cause the mean and median semimajor axes of the final binaries as well as the semimajor axes of the internal and external binaries in stable triple systems to increase. Star mergers and dynamical friction in close systems decrease the fraction of binary systems with highly eccentric orbits and the mean component mass ratios for the final binaries and the internal and external binaries in stable triple systems. Star mergers and dynamical friction in close systems increase the fraction of stable triple systems with prograde motions. Dynamical friction in close systems can both increase and decrease the mean velocities of the escaping single stars, depending on the density of the interstellar medium and the mean velocity of the stars in the system.  相似文献   

7.
Evolutionary models form a vital part of stellar population research in understanding their evolution, but despite their long history of development, they are often misrepresented and the properties of stellar population observed through broadband and spectroscopic measurements are also misinterpreted. With growing numbers of these synthesis models, model comparison becomes an important analysis to choose a suitable model for understanding stellar populations and model up-gradation. Along with model comparison, we reinvestigate the technique of modified Strömgren photometry to measure reliable parameter-sensitive colours and estimate precise model ages and metallicities. The assessment of Rakos/Schulz models with GALEV and Worthey’s Lick/IDS model find smaller colour variation: Δ(uz ? vz) ≤ 0.056, Δ(bz ? yz) ≤ ?0.05 and Δ(vz ? yz) ≤ 0.061. The study conveys a good agreement of GALEV models with modified Strömgren colours but with poor UV model predictions and observed globular cluster data, while the spectroscopic models perform badly because of outdated isochrone and stellar spectral libraries with inaccurate/insufficient knowledge of various stellar phases and their treatment. Overall, the assessment finds modified Strömgren photometry well suited to study different types stellar populations by mitigating the effects of age-metallicity degeneracy.  相似文献   

8.
《New Astronomy Reviews》2002,46(8-10):463-468
We present a nucleosynthesis calculation of a 25 M star of solar composition that includes all relevant isotopes up to polonium. We follow the stellar evolution from hydrogen burning till iron core collapse and simulate the explosion using a ‘piston’ approach. We discuss the influence of two key nuclear reaction rates, 12C(α, γ)16O and 22Ne(α, n)25Mg, on stellar evolution and nucleosynthesis. The former significantly influences the resulting core sizes (iron, silicon, oxygen) and the overall presupernova structure of the star. It thus has significant consequences for the supernova explosion itself and the compact remnant formed. The later rate considerably affects the s-process in massive stars and we demonstrate the changes that different currently suggested values for this rate cause.  相似文献   

9.
《New Astronomy》2007,12(2):161-163
We present Window To The Stars, a graphical user interface to the popular TWIN single/binary stellar evolution code, for novices, students and professional astrophysicists. It removes the drudgery associated with the traditional approach to running the code, while maintaining the power, output quality and flexibility a modern stellar evolutionist requires. It is currently being used for cutting edge research and interactive teaching.  相似文献   

10.
恒星物质的不透明度   总被引:1,自引:0,他引:1  
李焱 《天文学进展》1998,16(2):92-102
简介介绍了恒星物质的透明性质在恒星结构、演化、振动等许多恒星物理基本问题研究中的重要性和决定恒星物质不透明度的物理过程,回顾了第一代不透明度数据LAOL的发展历程与存在的问题,介绍了新一代不透明度数据OPAL的发展和目前观测与理论之间依然不一致的地方。  相似文献   

11.
12.
We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a “Noah’s Ark” milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.  相似文献   

13.
14.
大量研究表明,蓝离散星的形成可能有多种机制,目前比较流行的形成机制可以概括为以下几类:密近双星系统的质量传输及双星并合、密集星场的恒星碰撞,以及包含双星系统的恒星间 (双星-单星、双星-双星)相互作用导致的恒星并合。与此同时,蓝离散星在各类恒星系统中的普遍存在,也使得研究这类恒星的形成及演化成为追踪恒星系统动力学演化、化学演化及积分光谱性质变化的有效指针。  相似文献   

15.
16.
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.  相似文献   

17.
The radiative acceleration on iron inside stars may lead to an accumulation of this element in stellar internal layers. As discussed by several authors, this iron accumulation has many important consequences. It may lead to an extra convective zone, and in some cases it may help triggering stellar pulsations. However, the computations which have been done up to now ignore an important effect: the double-diffusive, or “thermohaline” convection induced by the inverse μ gradient. Detailed computations of all these processes have been introduced in the TGEC stellar evolution code. We show how thermohaline convection modifies the profiles of iron inside stars, with important consequences  相似文献   

18.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

19.
On the basis of the mixing-length theory, macroscopic turbulent stress is incorporated into the hydrostatic equilibrium equation in our model of stellar structure and evolution. For an 8M star from the main sequence stage to the early AGB stage, the effect of turbulence was followed through calculation of the ratio of turbulence stress gradient to gravity. The results are: during the stages of nuclear burning the ratio is almost negligibly small; however, during the RGB and early AGB stages, there exists a thin layer in the outer convective layer where the ratio amounts to several units, while outside the thin layer the ratio may attain 65%. These facts have obvious effects on the central temperature of the AGB star and on the star's structure and evolutionary features at the onset of thermal pulsation.  相似文献   

20.
The UV properties of old stellar populations have been subject of intense scrutiny from the late sixties, when the UV-upturn in early type galaxies was first discovered. Because of their proximity and relative simplicity, Galactic globular clusters (GGCs) are ideal local templates to understand how the integrated UV light is driven by hot stellar populations, primarily horizontal branch stars and their progeny. Our understanding of such stars is still plagued by theoretical uncertainties, which are partly due to the absence of an accurate, comprehensive, statistically representative homogeneous data-set. To move a step forward on this subject, we have combined the HST and GALEX capabilities and collected the largest data-base ever obtained for GGCs in UV. This data-base is best suited to provide insights on the HB second parameter problem and on the first stages of GCs formation and chemical evolution and to understand how they are linked to the observed properties of extragalactic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号