首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene–Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene–Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene–Early Miocene, Miocene–Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene–Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene–Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.  相似文献   

2.
Source rocks are present in all the stratigraphic units of the Mesozoic-Cenozoic deposits of the Turkmen shelf in the Caspian Sea. The highest source rock potential is characteristic of I terrigenous and carbonate-terrigenous rocks of Middle Jurassic age, and the Aptian, Paleogene, Neogene and Apsheron stages of the Quaternary system. To reveal the formation conditions of hydrocarbon deposits within Southwestern Turkmenistan, the principle of chemical thermodynamics is primarily used via the calculation of the free energy of gaseous hydrocarbons. This showed that hydrocarbon deposits within the topmost depositional complex (the red-colored strata of the Middle Miocene at the Akchagyl and Apsheron stages) are syngenetic; their formation was due to lateral migration from even-aged deposits from depression zones neighboring the uplifts.  相似文献   

3.
《Applied Geochemistry》1995,10(2):145-159
Tooth enamel from modern and fossil (Lazaret cave) Cervus elaphus was characterized in order to study the chemical and structural changes during fossilization. Calcium, P, Na, Mg, F, Cl, CO3, contents were measured by chemical analyses, and infrared (IR) spectroscopy was used to determine H20, OH, P043− and C032−. Carbonate increases during fossilization and substitutes for PO43− at the B-site and for OH at the A-site. The C032−-for-PO43− substitution experiences the highest increase. Water and OH contents decrease during fossilization. These chemical changes may be traced by Rietveld structure refinement (XRD). Like human enamel, red deer enamel consists of apatite. A good positive correlation has been found between the a cell parameter and C032− contents. Refinement of atomic positions and site multiplicity allow us to describe site distortions in P043− polyhedra and along the 63 axis; these distortions are indirect probes of the substituent ions in the apatite structure.At Lazaret cave, the karstic environment is thought to control the chemical and structural changes of the fossil enamels. Fossilization conditions have been favorable for a good conservation of the Cervus elaphus tooth enamels whatever their stratigraphic position and location were. These fossil enamels have experienced only slight structural and chemical changes considering their geological age. This accounts for a rapid burial in continental sediments of Lazaret prehistoric cave. These Lazaret fossil enamels could be considered as stable material which may be used for dating by the ESR and U-Th methods.  相似文献   

4.
K-Ar radiometric datings are presented for volcanic rocks from the Coastal Range of Taiwan and from Lanhsu and Lütao islands. The samples involved are basalts, andesites and dacites which show the main petrological and geochemical characteristics of island arc magmas. The K-Ar data show that volcanic activity occurred from Early Miocene to Early Pliocene times in the Coastal Range and in Lanhsu Island, and during Pliocene times (ca. 1.3–4.3 Ma) in Lütao Island. The geological significance of Early and Middle Miocene ages is discussed with respect to hydrothermal/metasomatic alterations which have affected most of the samples. A significant increase in incompatible elements (e.g., K and Sr) is shown to have occurred during Pliocene to Recent times, and is exemplified by the compositions of the Lanhsu, and Lütao volcanic rocks. The origin of these chemical variations is related to the magmatic effects of crustal thickening linked to the transition from subduction to collision regimes.  相似文献   

5.
Altar is a Cu-porphyry deposit related to several small plagioclase porphyry intrusions of the late Miocene formed on the margin of the Flat-Slab segment along the Andean Cordillera in north-west Argentina. New stratigraphic and structural mapping supported by geochemistry and geochronology of pre-ore volcanics at Altar has revealed that a period of ∼6–7 Ma of volcanism during the late Oligocene-early Miocene formed ∼4000 m of volcano-stratigraphic succession making up the Pachón Formation. It represents a period dominated by explosive to effusive eruption in a dynamic arc basin with local ash fall and flow deposition in lacustrine and fluvial sites. Volcanism is typified by medium- to high-K calc-alkaline arc magmatism with a shift from mafic compositions at the base to felsic rocks at the top of the formation containing zircons aged 21.9 ± 0.2 Ma (2 Std.Dev, U–Pb). A clear geochemical separation exists between early Miocene pre-ore volcanics that show signatures akin to non-adakitic, normal arc, extensional tectonic settings conducive of chemical differentiation at shallow crustal levels and correlate with intra-regional Abanico and Farellones Formations; and the middle to late-Miocene Cu-mineralised porphyry intrusions. After a break of ∼9 Ma in the geological record at Altar, these Cu-fertile bodies are emplaced entirely within the Pachón Rhyolite and represent adakite-like magmas with fractionation trends evolving from a lower crustal MASH zone. This distinction is controlled by a change from an extensional to compressive tectonic regime in the region during the middle Miocene in which magmas were stalled in the lower crust for an extended period, subsequently became enriched in metals and then formed several Cu-porphyry bodies which were emplaced during a relatively short period towards the late Miocene.  相似文献   

6.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

7.
Past geomorphological models assume that erosion of sediments from old mountain belts occurred at a relatively constant rate, based on comparatively uniform isostatic adjustment caused by unloading. Late Miocene strata of the south‐eastern United States provide an example of pulsed tectonism resulting in a surge in siliciclastic sediment production and transport. Regional tectonism (uplift of the southern Appalachian Mountains) and climatic conditions during the Late Miocene resulted in the long‐distance (up to 1000 km) fluvial transport of coarse siliciclastic sediments onto a stable carbonate platform in southern Florida. The sediments are unusual in that they are significantly coarser than marine‐transported sands in southern Florida, with discoidal quartz and quartzite clasts up to 40 mm in diameter locally present, and have relatively high potassium feldspar contents (up to 16% in some sample fractions), whereas feldspar is rare in modern Florida beach sands. It is suggested that previously documented rejuvenation of the southern Appalachian Mountains during the Middle to Late Miocene time, coupled with the Messenian sea‐level low, generated the increased rate of sediment production and necessary hydraulic gradient to allow rapid transport of coarse sediments. Tectonic influence on the river pathway in Florida, as well as in the southern Appalachian Mountains, may have maintained the river on the narrow carbonate platform. The Florida Platform during the Late Miocene must also have had a sufficiently wet climate to cause episodic transport of the coarse sediments. Siliciclastic sediment transport on the Florida Platform during the Late Miocene greatly differed from Pleistocene to modern conditions, which are dominated by the transport of fine‐grained sands by longshore marine processes.  相似文献   

8.
The molecular and stable isotope compositions of coalbed gases from the Upper Carboniferous strata and natural gases accumulated within the autochthonous Upper Miocene Skawina Formation of the D?bowiec-Simoradz gas deposit were determined, as well as the chemical and stable isotope compositions of waters from the Skawina Formation and waters at the top of the Upper Carboniferous strata of the Kaczyce Ridge (the abandoned “Morcinek” coal mine) in the South-Western part of the Upper Silesian Coal Basin. Two genetic types of natural gases within the Upper Carboniferous coal-bearing strata were identified: thermogenic (CH4, small amounts of higher gaseous hydrocarbons, and CO2) and microbial (CH4, very small amounts of ethane, and CO2). Thermogenic gases were generated during the bituminous stage of coalification and completed at the end of the Variscan orogeny. Degassing (desorption) of thermogenic gases began at the end of late Carboniferous until the late Miocene time-period and extended to the present-day. This process took place in the Upper Carboniferous strata up to a depth of about 550 m under the sealing Upper Miocene cover. A primary accumulation zone of indigenous, thermogenic gases is present below the degassing zone. Up to 200 m depth from the top of the Upper Carboniferous strata, within the weathered complex, an accumulation zone of secondary, microbial gas occurs. Waters within these strata are mainly of meteoric origin of the infiltration period just before the last sea transgression in the late Miocene and partly of marine origin having migrated from the Upper Miocene strata. Then, both methanogenic archaebacteria and their nutrients were transported by meteoric water into the near-surface Carboniferous strata where the generated microbial CH4 saturated coal seams. Waters within the Miocene strata of the D?bowiec-Simoradz and Zab?ocie are of marine origin, and natural gases accumulated within autochthonous Miocene strata of the D?bowiec-Simoradz gas deposit were most probably generated by microbial processes of on organic matter dispersed within the strata, though some contribution of gases migrating from the Carboniferous coal-bearing strata cannot be excluded.  相似文献   

9.
This study collected the early Oligocene to middle Miocene sediments from the Gerze Basin of Tibet, and used X-Ray diffraction (XRD) and Scanning Electron Microscope (SEM) to discuss their clay mineralolgy, clay indices, better understand the clay mineralogy and its paleoclimatic significance. The results show that clay minerals of the Gerze Basin sediments are mainly composed of iilite and chlorite, with minor amounts of smectite and kaolinite, and their relative content varies along the section. Variations of relative contents and clay indices suggest that the Gerze Basin has experienced three-stage evolution of paleoclimate: I ) high ilUte and chlorite contents, with fluctuant smectite and low (I+Ch)/(K+S) ratio, indicative of a dominant seasonal arid climate from the early Oligoeene to late Oligocene; Ⅱ) higher illite and chlorite contents and larger (I+Ch)/(K+S) ratio but absence of kaolinite, indicating a colder and drier climate from the late Oligocene to early Miocene; Ⅲ) high iilite and chlorite contents with fluctuant (I+Ch)/(K+S) ratios and occasional occurrence of kaolinite, suggesting that the climate became warmer and more humid compared with that of stage Ⅱ in the mid-Miocene. These conclusions were also reinforced by the clay morphology, which suggests that physical weathering dominated in stage Ⅱ, while relatively strong chemical weathering was dominant in stages Ⅰ and Ⅲ Clay minerals of the sediments mainly consist of illite and chlorite, indicating that the source rock played a significant role in clay origin. It is inferred that global cooling and the enhancement of denudation and obstruction of northward moisture due to the uplift of the Qinghai-Tibet Plateau were responsible for the provenance of iUite and chlorite under weak chemical weathering. Though the Qinghai-Tibet Plateau reached a certain elevation by the mid-Miocene, yet the mid-Miocene widespread warming might have largely impacted the Gerze climate.  相似文献   

10.
The reconstruction of regional long-term patterns recorded in marine sedimentary successions of the Eastern Paratethys is important in understanding the role of Cenozoic climate change and orogenic activity on the depositional environment and sedimentation dynamics in Western Asia. In this study, the environmental conditions in the early to middle Miocene (Islam Dağ section) in eastern Azerbaijan are elucidated using petrographic–mineralogical relations, detrital indicators, weathering indices and δ13C and δ18O signatures of organic-rich (total organic carbon: ca 3 to 6 wt. %) argillites. Sedimentary facies and chemical proxies (Na/K, K/Al, Si/Al, Ti/Al ratios, chemical index of alteration values) indicate arid conditions, reduced weathering rates in the hinterland and sediment deposition in an euhaline and poorly oxygenated deep-water basin during the early Miocene, followed by a shift to humid conditions, higher weathering rates and an oxygenated water column in the mid-early Miocene. Long-term aridification and deposition of gypsiferous and calcareous argillites under generally more oxygenated, euhaline to polyhaline conditions in a lacustrine or restricted shelf setting until the middle Miocene is evidenced by gradual changes in element ratios and the chemical index of alteration. Discriminant function analysis suggests the Russian Platform, drained by the Palaeo-Volga and Palaeo-Don river systems, to be the source area for the siliciclastic input throughout the Miocene, although a minor contribution of volcanogenic detritus and mafic components from the Greater Caucasus is possible. The C–S–Fe associations and increasing Fe/Al ratios towards the middle Miocene support the concept of continuous influx of detrital Fe and total organic carbon. The formation of ferruginous smectite from alteration of volcanic ash layers could have affected the preservation of total organic carbon and therefore the sedimentary C and Fe budget in the Eastern Paratethys basins. Palaeo-climatic reconstructions based on δ13C (−34·5 to +1·7‰ Vienna Pee Dee Belemnite) and δ18O (−34·7 to −4·8‰ Vienna Pee Dee Belemnite) records of authigenic carbonates should be made with great caution, as the pristine marine signatures may be affected by the oxidation of organic matter and meteoric diagenesis.  相似文献   

11.
Stable isotopes (??2H, ??18O and ??13C) and radiocarbon (14C) have been used in conjunction with chemical data to evaluate recharge mechanisms and groundwater residence time, and to identify inter-aquifer mixing in the Djeffara multi-aquifer in semi-arid southeastern Tunisia. The southern part of this basin, the Djeffara of Medenine aquifer system, is comprised of two main aquifers of Triassic and Miocene sandstone. The Triassic aquifer presents two compartments; the first one (west of the Medenine fault system) is unconfined with a well-defined isotope fingerprint; the second compartment is deeper and confined. Multi-tracer results show groundwater of different origins, ages and salinities, and that tectonic features control groundwater flows. Fresh and brackish groundwater from the unconfined part of the Triassic aquifer was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 14C ages, are variable and could reach 3.5?mm/year. Brackish water of the deep confined part of the Triassic aquifer has stable isotope composition and 14C content that indicates earlier recharge during late Pleistocene cold periods. Brackish to saline water of the Miocene aquifer presents variable isotope composition. Groundwater flowing through the Medenine fault system is mainly feeding the Miocene aquifer rather than the deep confined part of the Triassic aquifer.  相似文献   

12.
Mineral and chemical compositions of bone phosphate were studied in two samples from the outer Namibian shelf sediments composed of fish skull fragments and whale ribbon. Fossilization of bones is accompanied by the accumulation of lithogenic components, iron, sulfur, rare earth and other trace elements (Ni, Cu, Co, Cd, Mo, La, Ce, Th, U, and others), whereas the organic and mineral carbon content decreases. The evolution of bone phosphate during fossilization consists in transition from primary hydroxylapatite to a gel-type material, which subsequently becomes globular and crystallizes as fluorcarbonate-apatite crystallites. Additionally, some authigenic minerals, including both relatively widespread minerals (pyrite, uraninite, and coffinite) and rare minerals (graphite and calcium and germanium oxides) are formed in the bones. A considerable proportion of uranium in bones consists of uranium minerals, which also contain rare earth elements.  相似文献   

13.
Four genera and one indeterminate genus (total eight species) of fossil rhinoceroses (Mammalia; Perissodactyla; Rhinocerotidae) are recognized from the Neogene of central Myanmar. In the early Miocene, most area of central Myanmar were under the shallow marine condition, and no rhinocerotid remain has been documented yet. During the middle to late Miocene, the rhinocerotid remains are commonly found and are represented by “Diceratheriumnaricum, Brachypotherium perimense, Brachypotherium fatehjangense and an indeterminate rhinocerotid. In the latest Miocene, these archaic rhinoceroses became extinct. In the late Neogene, the extant genera, Rhinoceros (late Miocene to Pleistocene) and Dicerorhinus (Plio-Pleistocene) first appeared in Myanmar. They appear to have dispersed to the Island Southeast Asia from the continental Asia during the early Pleistocene to middle Pleistocene when the eustatic sea level became low remarkably.  相似文献   

14.
Messinian evaporites, which resulted from the salinity crisis during the final closure of the Mediterranean Sea, are exposed in SE Turkey. These evaporites formed in two isolated sub-basins, Iskenderun-Arsuz (IA) and Hatay-Samanda? (HS), which belong to different depositional configurations and tectonic structures. The Neogene fill of these sub-basins consists of a thick sedimentary succession that started with Early Miocene terrestrial clastics, followed by reefs (Middle Miocene) and shallow water siliciclastics (Tortonian - Early to Late Miocene) and finally Messinian evaporates. These sub-basins accumulated in a diverse range of depositional environments from very shallow to deeper water. Evaporite facies in the IA sub-basin consist of sabkhas, saline lagoons and ponds. They are mainly represented by chemical deposits such as scattered gypsum nodules and balls, nodular bedded gypsum, laminated gypsum (Type-A) and selenites (Type-S1). Evaporites in the HS sub-basin mainly consist of detrital gypsum composed of gypsum laminae (Type-B, C), gypsum arenite-rudites and deeper water selenites (≤ 20 m), and resedimented selenites (Type-S2), which were deposited on a sulfate platform with a slope-basin transitional zone. Secondary gypsum with alabastrine and porphyroblastic textures as well as satin spar veins is commonly associated with the sabkha-type evaporites of the IA sub-basin. Deeper-water clastic evaporites of the HS sub-basin have generally remained as primary gypsum or have only been slightly affected by diagenetic alterations. The isotope values (87/86Sr; δ18O SMOW; and δ34S CDT) from the different kinds of gypsum lithofacies of the sub-basin are similar to those of the Messinian evaporites in other peri-Mediterranean basins, indicating an origin from marine water without external or basinal contributions.The Messinian evaporites examined in this paper are overlain by Early Pliocene (Zanclean) deposits composed of shallow- and deep-water siliciclastics and carbonates with local intercalations of Lago-Mare-type strata. Throughout the Messinian evaporitic stage, the IA sub-basin was mainly comprised of shallow water evaporites, while the HS sub-basin underwent deepening related to regional tectonics induced by the Dead Sea Fault during the construction of the Hatay Graben.  相似文献   

15.
Four legume fruits (Fabaceae) from the Siwalik sediments (middle Miocene to lower Pleistocene) of Darjeeling and Arunachal Pradesh of Eastern Himalaya are described here. One fossil fruit, Dalbergia prelatifolia sp. nov., is recovered from the lower part of the Siwalik succession (Gish Clay Formation of Sevok Group; middle to upper Miocene) of Darjeeling foothills. Mastertia neoassamica sp. nov. and Acacia miocatechuoides sp. nov. are collected from the lower part of the Siwalik succession (Dafla Formation; middle Miocene to upper Miocene), while Pongamia kathgodamensis Prasad is recovered from the upper part of the Siwalik succession (Kimin Formation; upper Pliocenelower Pleistocene) of Arunachal sub Himalaya. Their presence indicates a warm and humid tropical environment in the region during the Siwalik sedimentation.  相似文献   

16.
A new set of apatite fission‐track and apatite (U–Th)/He data reveals a hitherto undated late Miocene exhumation pulse in the eastern part of the Eastern Alps. While distinct parts of the study area, including the Seckauer Tauern, have been at near surface conditions (<100 °C) since the Eocene, the neighbouring Niedere Tauern experienced enhanced cooling and exhumation in the middle Miocene and again at the late Miocene/Pliocene boundary. Middle Miocene exhumation is interpreted as a result of tectonic escape and convergence that operated simultaneously during lateral extrusion of the Eastern Alps. As the higher late Miocene/Pliocene exhumation rates are restricted to a single tectonic block, namely the Niedere Tauern, we infer a tectonic trigger that is probably related to a change in the external stress field that affected the Alps during this time.  相似文献   

17.
The geochemistry of Upper Quaternary organic-rich (Corg 3.7–10.0%) sediments recovered by the 40-m-long Core MD02-2508 from the upper continental slope of Baja California is compared to the chemical composition of sedimentary rocks from the Miocene Monterey Formation, California. It is ascertained that concentrations of most macroelements (Al, Ti, Mg, K, Fe, M, S, Corg) and many microelements, including chalcophiles Ag, As, Mo, Sb, Se, Zn, along with some others (U, Co, Ni, Y, and REE) are nearly equal in both types of sediments. In addition, concentrations of most microelements in both types of sediments are close, to the average values common for the worldwide carbonaceous black shales irrespective of their lithology and age, indicating a stable influence of organic matter on their concentration during sedimentation and early digenesis.  相似文献   

18.
The Rabigh area, a coastal region north of Jeddah city, Saudi Arabia contains raised Quaternary coral reefal terraces and reworked coral fragments mixed with sand and gravel. This area has a thin exposure Lower Miocene shallow marine carbonate rocks that laterally pass into evaporites. The Miocene carbonate and evaporite rocks conformably overly the Lower Miocene siliciclastic sequence, are in turn capped by the Harrat basaltic boulders. The Miocene carbonates are made up of dolomitic packstone, wackestone and mudstone, whereas the overlying Quaternary reefal terraces are composed of coral boundstone and grainstones.The Quaternary reefal terraces of Rabigh area have been dated using the uranium-series dating method to obtain precise dates for these corals. The calculated ages (128, 212 and 235 ka) indicate that deposition took place during high sea level stands associated with interglacial times during Oxygen Isotope Stages (OIS) 5 and 7. The youngest age (128 ka) clearly corresponds to stage 5e of the last interglacial period. The obtained ages correlate well with those of the emerged reefs on the Sudanese and Egyptian coasts at the western side of the Red Sea. The broad distribution of wet climate, pluvial deposits on the continents and high sea level stands indicate a wide geographical range of the interglacial events of the Oxygen Isotope Stages (OIS) 5 and 7.The oxygen and carbon isotopic composition of the Miocene and Quaternary carbonate rocks in Rabigh area show a broad range of δ13C and δ18O. The Quaternary carbonate rocks have significantly higher δ13C than the Miocene ones, but low δ13C values of the Miocene samples likely indicate a high contribution of carbon from organic sources at the time of deposition. Linear trends are evident in both groups of samples supporting the likelihood of secondary alteration.  相似文献   

19.
Two spinel harzburgite xenoliths from a Pleistocene alkali basalt unit erupted at the northwestern corner of the Tertiary Kishb Plateau (Saudi Arabia) are characterized by an incipient transition from protogranular to porphyroclastic texture. Vermicular and interstitial spinels are closely associated with neoblasts of olivine, enstatite, and diopside. Sparse exsolution lamellae of high-Ca pyroxene occur in all the enstatite porphyroblasts. Olivine neoblasts are, in many cases, in contact with one another, with the triple grain junctions rarely approaching 120°. Chemical zoning is undetectable by microprobe in spinel and olivine, whereas zoning of Al in enstatite and diopside indicates that chemical equilibrium was not attained. Clear, palegreen glasses occur as veinlets about 10 microns or less in width along grain boundaries and cracks. Consistent counting rates for Na in these glasses were obtained only at 5 kV with a sample current of about 6 namps and counting time of less than 7 s. These glasses are chemically homogeneous and are characterized by relatively high contents of SiO2 (55.8–58.7 wt%), Na2O (6.4–7.6 wt%), and Al2O3 (20.0–21.6 wt%), with inferred volatile contents of less than 1 wt%. The glass is suggested to be of upper mantle origin rather than having developed from the host basalt or by decompressional melting upon ascent.Geothermometry and geobarometry indicate that the lithospheric upper mantle beneath the Arabian Shield had been locally heated to higher than 1,050° C during Miocene/ Pliocene, resulting in some degree of partial melting. Spinel was formed by reaction between aluminous pyroxenes and olivine during subsequent cooling, and intercrystalline Mg-Fe exchange reached a steady state at about 800° C. The geotherm beneath the Arabian Shield since Miocene is estimated to be somewhat lower than that representing the present oceanic upper mantle. The thermal history established is consistent with the tectonic history of the Red Sea area and indicates a two-stage magmatism in the Arabian Shield since Miocene.  相似文献   

20.
Integrated micropalaeontological, palynological and lithological analysis of the Upper Cretaceous to Recent sedimentary succession, as observed in deep and shallow well drill cores and field samples, has revealed a highly varied history of environments of deposition. Supratidal, freshwater conditions prevailed during the Late Cretaceous, Oligocene, Early and Late Miocene to Recent Marginal marine conditions are represented in the Palaeocene to Lower Eocene successions, but without any indication of hypersaline sabkha environments. Marginal marine conditions involving periodic hypersaline sabkha and hypersaline lake development existed during the Early and Late Miocene. In most of the studied areas, very deep, normal salinity marine conditions, within the upper bathyal regime, existed during the Early Miocene; episodes of marine suboxia are indicated by the microfaunal and organic facies character. Later, during the late Early Miocene and early Middle Miocene, similar deep marine conditions prevailed, but with episodes of hypersalinity that culminated in the late Middle Miocene. Such conditions are believed to have resulted from the isolated of the basin and the precipitation of deep marine precipitates. These changes in palaeoenvironment are considered to reflect episodes of eustatic sea level fluctuation, which are possibly linked to the structural evolution of the Red Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号