首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
In this paper, a new transient forced quasi-resonant triad interaction theory in a beta channel is proposed to investigate the interaction between planetary-scale diffluent flow composed of zonal wavenumbers 1--3 and synoptic-scale waves produced continuously by a synoptic-scale vorticity source fixed upstream of an incipient blocking region during the life cycle of blocking. It is shown that the superposition of initial three Rossby waves for zonal wavenumbers 1 (monopole), 2 (dipole), and 3 (monopole), which permit triad quasi-resonance, can represent an incipient blocking event. The synoptic-scale eddies may act to amplify the incipient blocking and to excite a blocking circulation with a strong meander, whose flow pattern depends on the initial amplitudes of the planetary waves and both the intensity and location of preexisting synoptic-scale waves. The onset (decay) of the planetary-scale split-flow blocking is mainly represented by a strong increase (decrease) in the amplitude of the zonal wavenumber 2 component, having a dipole meridional structure related to the preexisting synoptic-scale eddies. The typical persistence time of the model blocking was of about 20 days, consistent with observations of blocking patterns. In our model, isolated asymmetric dipole blocking is formed by synoptic-scale waves. The instantaneous fields of total streamfunctions exhibit a remarkable resemblance to the synoptic maps observed during the life cycle of blocking. During the onset stage, the synoptic-scale waves are enhanced and split into two branches around the blocking region due to the feedback of the amplified blocking, in agreement with the observed changes of synoptic-scale waves in real blocking events. In addition, a diagnostic case study of blocking is presented to confirm the forced quasi-resonant triad interaction theory proposed here.  相似文献   

2.
从含非绝热项的准地转运动方程组出发,分析了青藏高原大尺度热力作用下非绝热Rossby波的一些性质,从理论上证明当背景西风气流为正压时,冬季高原冷却作用有利于Rossby波的经向传播,夏季高原大尺度热力作用不利于波动的经向传播。非绝热Rossby波的频率方程说明冬季高原的热力作用是中纬季节内振荡的重要激发机制。同时,在背景西风气流为纯斜压条件下,求解了高原热力作用下非绝热Rossby波的频率,并由频率方程说明冬季高原热力作用有利于波动向不稳定方向发展,而夏季高原的大尺度热力作用对波动稳定性的影响存在临界值。  相似文献   

3.
利用1979—2013年ERA-interim再分析资料,通过均方差分析、功率谱分析、带通滤波及合成分析等统计方法系统地分析了东亚季风区冬季经向风的季节内变化及其可能机理。结果表明,东亚季风区冬季经向风异常在我国华南一带变化显著,振荡周期为10~20 d(准双周振荡)。在准双周尺度上,水平方向上,850 h Pa异常北风主要呈现从高纬向低纬传播的特点,60°N附近异常经向风向东南方向传播,副热带30°N附近弱的异常经向风向东传播,二者在华南汇合,随后分为两支中心,分别向南和向东继续传播,我国华南一带存在基本气流向准双周尺度波动的能量转换,因此异常经向风在华南会显著增强;垂直方向上,对流层上层、中层、下层的经向风呈现强—弱—强的异常中心特征,对流层下层850 h Pa和上层200~300 h Pa均存在经向风大值中心;我国东部上空300 h Pa上,副热带地区波动比850 h Pa更明显,60°N附近波动向东南方向移动,同样在我国东部地区合并,波动辐合导致波动能量增强。  相似文献   

4.
When a broad ocean current encounters a large-scale topographic feature, standing Rossby wave patterns can be generated. Short Rossby waves with a scale Li = √ Q/β (Q is the speed of the approaching flow; β is the meridional gradient of f) are generated east of the topography. If the zonal scale of the topography, L, is planetary, long standing Rossby waves can be generated west of the topography, when the current has a meridional component. The long waves focus the disturbance zonally and produce alternating regions of intensified or reduced zonal flow. The meridional scale that characterizes these zonal bands is the intermediate scales, L = Li2/3L1/3. When the meridional topographic scale is comparable to L, the amplitude of the long-wave disturbance is dominant. Using multiple-scale methods to exploit the scale gap between the planetary, intermediate and Rossby wave scales, the topographically induced pressure and velocity fields due to a zonal ridge are obtained. When the planetary-scale flow field is directed poleward, a westward counterflow can occur along the poleward flank of the ridge. The meridional scales of these topographically induced flows are comparable to those observed along the Indian-Antarctic Ridge by Callahan (1971).  相似文献   

5.
A parametrically excited higher-order nonlinear Schr dinger (NLS) equation is derived to describe the interaction of a ,slowly moving planetary-scale envelope Rossby soliton for zonal wavenumber-two with a wavenumber-two topography under the LG-type dipole near-resonant condition. The numerical solution of this equation is made. It is found that in a weak background westerly wind satisfying the LG-type dipole near-resonance condition, when an incipient envelope Rossby soliton is located in the topographic trough and propagates slowly, it can be amplified through the near-resonant forcing of wavenumber-two topography and can exhibit an oscillation.However, this soliton can break up after a long time and excite a train of small amplitude waves that propagate westward. In addition, it is observed that in the soliton-topography interaction the topographically near-resonantly forced planetary-scale soliton has a slowly westward propagation, but a slowly eastward propagation after a certain time. The instantaneous total streamfunction fields of the topographically forced planetary-scale soliton are found to bear remarkable resemblance to the initiation, maintenance and decay of observed omega-type blocking high and dipole blocking. The soliton perturbation theory is used to examine the role of a wavenumber-two topography in near-resonantly forcing omega-type blocking high and dipole blocking. It can be shown that in the amplifying process of forced planetary-scale soliton, due to the inclusion of the higher order terms its group velocity gradually tends to be equal to its phase velocity so that the block envelope and carrier wave can be phase-locked at a certain time.This shows that the initiation of blocking is a transfer of amplified envelope soliton system from dispersion to nondispersion. However, there exists a reverse process during the decay of blocking. It appears that in the higher latitude regions, the planetary-scale envelope soliton-topography interaction could be regarded as a possible mechanism of the establishment of blocking.  相似文献   

6.
考虑β随纬度变化下的Rossby孤立波与偶极子阻塞   总被引:1,自引:0,他引:1       下载免费PDF全文
利用文献[4]得到的推广的β平面近似式为f=f0+β0 y—(δ0/2)y2,研究由δ0项所引起的一类Rossby孤立波,而不考虑基流切变和地形等因子的作用。经过计算可以发现,当经向波数为1时,这种孤立波具有显著的南低北高的偶极子阻塞结构,它主要存在于弱西风气流中,并且偶极子的能量随着纬度的增高更容易集中(即高纬偶极子结构趋于局地化),因而,β随纬度的变化可能是中高纬度地区偶极子阻塞产生的原因之一。  相似文献   

7.
大气动力学诊断Rossby波的传播时,通常用波作用通量来表示。常用的三种波作用通量分别为Plumb波作用通量,T-N波作用通量和局地E-P通量。本文详细讨论了这三种方法的特征差异,并结合2016年1月的一次寒潮事件,比较了三种方法在该事件中的适用性。结果表明:1)Plumb波作用通量的纬向分量较大而经向分量较小,适用于振幅较小的纬向均匀的西风带Rossby长波的诊断。2)T-N波作用通量是对Plumb波作用通量的改进,经向分量得以增强,能更好地描述纬向非均匀气流中的较大振幅的西风带Rossby长波扰动。T-N波作用通量计算时,背景场取多年平均的当月气候场较合适,能更好地反映当前季节内的Rossby波传播异常。3)局地E-P通量可以诊断一段时间内天气尺度瞬变波对背景场(定常波)总的调控作用,但无法直接反映Rossby长波的逐时演变(T-N波或Plumb波作用通量则可以)。  相似文献   

8.
利用1979—2019年ECMWF提供的ERA-Interim逐日再分析资料,采用Morlet小波分析、滤波及合成分析等方法,探究了青藏高原夏季对流层高层纬向风季节内振荡(IntraSeasonal Oscillation,ISO)的主要周期及其传播特征。结果表明:青藏高原夏季高层纬向风季节内振荡的主要周期为10~30 d,其强度存在明显的年际差异。在纬向风ISO强年,振荡过程持续时间长、振幅强,ISO方差中心从对流层高层向下影响到对流层中层,表现为相当正压结构。其传播在纬向上主要表现为ISO中心从高原东部3次向东传,可达西太平洋地区;经向上分别有4次自中高纬向南传播的10~30 d ISO中心与来自低纬地区的ISO中心在高原南侧汇合,其强度在高原南侧有所加强,强振荡中心可向南传播到达低纬地区。ISO的位相演变主要表现为低频反气旋和低频气旋中心在高原东部交替出现,引起东部地区上空低频东风和低频西风的强度变化。在ISO极端活跃位相,高原东部低频西风达最强。  相似文献   

9.
The KdV equation with topography included in an N-level model is derived. It is shown that if the topography ex-ists. the KdV equation may describe the solitary Rossby waves in the case of basic current without vertical shear, and itis no necessary to introduce the MKdV equation. The results of calculations show that the change of horizontal shearpattern of basic flow may cause an important change of the streamline pattern of the solitary waves with the oddmeridional wavenumber m, and has no effect for the even meridional wavenumber m. The vertical shear increases thesteepness of the barotropic solitary modes, and it has a complicated effect on the baroclinic modes. The influences oftopographic slope on the solitary waves are very great. The southern and northern slopes of topography may cause dif-ferent solitary wave patterns, with the effect of northern slope greater. The effect of Froude number on the solitarywaves is generally to steepen the solitary waves, however, the effect also depends on the meridional wavenumber m andthe modes of solitary wave.  相似文献   

10.
正压准地转模式中大地形作用下的低频波   总被引:2,自引:0,他引:2  
利用包含大地形和常速纬向基本气流的正压准地转位涡度方程,研究了大地形对低频波激发的作用,结果表明,起作用的地形因子主要是地形的最大高度和地形坡度。地形最大高度的作用主要是使Rossby波趋向低频,而地形坡度的作用主要是对Rossby波的稳定性起决定作用,同时适当的地形坡度也可导致低频波的形成。而常速纬向基流在总体上的作用是使波动变得趋向低频,且西风基流更有利于低频(30~60天)波的形成。从纬向波数上看,纬向3波以上的波动更容易出现低频(30~60天)。  相似文献   

11.
Based on previous observational studies of the mean atmospheric circulation leading to generalized frosts (GF) in central Southern South America, it is possible to establish a hypothesis that specific large scale patterns are associated to the frequency of occurrence of these events through the propagation of Rossby waves remotely excited. This hypothesis is tested here through a teleconnection analysis for austral winters which present an extreme frequency of occurrence of GF in southeastern South America, particularly over the Wet Pampa area in Argentina. Rossby wave propagation regions are identified for two basic states given by the composition of winters with maximum and minimum frequency of GF occurrence, during the 1961–1990 period. The stationary wavenumber K s indicates the regions where the Rossby wave propagation is permitted and those where it will be inhibited (K s = 0), highlighting the importance of the jets as waveguides. Nevertheless, differences exist between both basic states analyzed. These differences indicate that the locations for wave generation and its later evolution are conditioned by the basic state. Results are validated through a baroclinic model, which simulates the Rossby wave patterns responsible for the teleconnection. Numerical experiments confirm that the principal wave activity takes place inside the subtropical and polar jets. In particular, for the basic state with maximum frequency of GF occurrence, the wave trains propagating inside the subtropical and polar waveguides merge just before entering the continent, as shown by the observations prior to the occurrence of GF events. This configuration favors the development of an intense south wind anomaly with large meridional extension which results in the intensification of anticyclonic circulation in southern South America. A conceptual model is presented to summarise all these results.  相似文献   

12.
利用线性理论模型进行解析和模拟是大气科学的重要基础研究方法之一, 其简单明了, 解释了如Rossby波形成等重要的环流现象。近年, 有研究 (Chen et al., 2001) 运用定常线性准地转模型研究副热带高压的形成, 在相似加热强迫下, 其结果与理论研究和GCM的研究不同。本文运用该模型系统研究了由季风降水产生的潜热加热所激发的副热带定常波的结构特征, 以理解其结果与GCM不一致的原因。研究表明基本流对热强迫的定常波的结构有重要的影响: (1) 当基本流为东风或为零时, 定常波在垂直方向上表现为第一斜压结构, 波动振幅随东风的增大而减小; (2) 当基本流为西风时, 呈现向上的传播特征, 振幅随高度的升高而增大。而且存在一个临界风速Uc(约3 m/s), 此时, 波动振幅最强; 基本流的平流作用具有非对称性, 西风时平流作用远远强于东风。由此揭示了该线性模型解的本质: 加热在热源区所激发的经向地转涡度输送必须能够平衡加热的位涡制造和纬向位涡平流; 基本流的经向和垂直方向的变化使得气旋和反气旋中心偏向热源中心北侧, 并进一步发现当基本流为夏季亚洲季风区纬向平均的纬向风场时, 线性模型的解中位于中低层的反气旋中心显著抬升, 而不出现在地面上, 与完整的大气环流模式的结果接近。说明即使在线性模式中, 洋面副高的形成也不能完全用季风潜热加热来解释; 另外, 静力稳定度对热强迫的副热带环流的影响也很重要, 使热源的强迫作用放大。  相似文献   

13.
王丽吉  杨程 《气象学报》2018,76(1):62-77
利用太平洋地区台风过境期间6个热带气象站的高分辨率无线电探空资料,结合扩展经验正交函数(EEOF)展开,对热带下平流层行星波和重力波扰动进行了分离,给出了一种热带地区提取重力波扰动的新方案。对观测数据做EEOF展开后,选择表征行星尺度波动模态的特征向量和相应权重进行气象要素场的重建。结果显示,在不同的台风过程期间,温度、纬向风和经向风的重建扰动量显示出不同的动力学偏振关系:在准两年振荡(QBO)东风位相时与赤道开尔文波的偏振关系一致,而在准两年振荡西风位相时与混合罗斯贝-重力波(MRG)的偏振关系一致。把行星尺度波动模态从原始观测中剔除,得到新的扰动廓线,对其进行重力波垂直波数谱的谱型拟合。结果发现,与以往方法提取的重力波扰动相比,新方法所得谱型参数中特征垂直波长λ*在不同时期不同站点变化很小,稳定在1.7 km左右,且低频波数段谱斜率s的数值与理论假设1十分接近。综合其研究结果可以推测,用新方法提取的热带重力波扰动更加符合当前的理论垂直波数谱模型。   相似文献   

14.
InternalGravityWavesGeneratedbyaLocalThermalSourceinanIrrotationalZonal-VerticalPlane:NumericalAnalysisZhangDaizhou(张代洲)(Cent...  相似文献   

15.
16.
SomeAspectsoftheCharacteristicsofMonsoonDisturbancesUsingaCombinedBarotropic-BaroclinicModel¥N.R.ParijaandS.K.Dash(CentreforA...  相似文献   

17.
Abstract

The topographic stability of forced planetary waves in α β‐channel is investigated using a barotropic model. The equilibrium forced waves are the result of the interaction of a constant mean zonal wind over finite‐amplitude surface orography. Small‐amplitude perturbations of the equilibrium flows are considered that have a wavy part with the same zonal wavenumber as the forcing but an arbitrary meridional structure. The mean zonal part of the perturbations is also taken to be arbitrary. This configuration allows us to (1) isolate those instabilities that depend crucially on topography through form drag and (2) investigate non‐topographic effects on topographic instability that arise from the convergence of Reynolds stresses. A numerical stability analysis is then performed wherein the effects of truncation are emphasized.

This numerical approach casts doubts about the results obtained from some earlier studies involving various ad hoc assumptions. We find, in particular, that unstable long waves (i.e. waves with the zonal wavelength greater than the meridional wavelength) exist under superresonant conditions. This contradicts some previous results that suggest long waves are unstable only when the flow is subresonant. Further, our model reveals the existence of some interesting travelling instabilities. The latter are shown to depend on both form drag and Reynolds stresses in that these two mechanisms alternate in time in supplying the perturbation with the required energy to maintain the exponential growth.  相似文献   

18.
Time-mean global general circulation data are employed to analyze the temporal and spatial variations ofthe meridional gradient of zonal mean potential vorticity,the critical wavenumber n_s for horizontal wave-propagation,and the critical wavenumber K_c for vertical wave-propagation.Thereby the kinematic charac-teristics in the propagation of atmospheric stationary waves and their annual variations are studied.Resultsshow that in the troposphere n_s and K_c usually decrease with the increase of either latitude or altitude.Synoptic and near-resonant Rossby waves could be trapped during their upward and meridional propagations.These characteristics possess prominent annual variations,especially in the Northern Hemisphere.It is foundthat the spatial and temporal variations of these kinematic characteristics are in good agreement with those ofthe atmospheric wave patterns.  相似文献   

19.
    
The 30–60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30–60 day oscillation mode in many aspects, such.as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30–60 oscillation. It is considered that CISK-Rossby mode should not be neglected.  相似文献   

20.
Summary An attempt has been made in this paper to examine different modes of oscillation in the wind field during different seasons over Thiruvananthapuram (lat. 8.29° N, long. 76.59° E, located at the extreme southwest coast of India) based on daily upper air observations for the period from January 1997 to December 1999. A power spectral analysis is carried out with the upper air data of the station. The study shows that one and half cycle of Quasi–Biennial Oscillation (QBO) and the power spectra of the meridional wind component exhibit peaks between the period of four days and seven days (corresponding frequency range between 0.25 day−1 and 0.15 day−1) during all seasons. The seasonal variation of these large-scale oscillations over the station depends upon the background mean zonal flow, which in turn closely related to the QBO structure. The time sequence of power spectra shows that the disturbances with periods between four days and seven days dominantly prevail in the upper troposphere and lower stratosphere throughout the year. The regimes of high power spectral intensity in this period range are maintained in the levels where the mean zonal flow (westerly or easterly) weakens and changes with height. The study establishes the fact that disturbances (mixed Rossby-gravity waves) acquire maximum power in the winter season whereas the south-west monsoon exhibits minimum spectral intensity when spreading of energy over a frequency range takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号