首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hans Van de Vyver 《水文研究》2018,32(11):1635-1647
Rainfall intensity–duration–frequency (IDF) curves are a standard tool in urban water resources engineering and management. They express how return levels of extreme rainfall intensity vary with duration. The simple scaling property of extreme rainfall intensity, with respect to duration, determines the form of IDF relationships. It is supposed that the annual maximum intensity follows the generalized extreme value (GEV) distribution. As well known, for simple scaling processes, the location parameter and scale parameter of the GEV distribution obey a power law with the same exponent. Although, the simple scaling hypothesis is commonly used as a suitable working assumption, the multiscaling approach provides a more general framework. We present a new IDF relationship that has been formulated on the basis of the multiscaling property. It turns out that the GEV parameters (location and scale) have a different scaling exponent. Next, we apply a Bayesian framework to estimate the multiscaling GEV model and to choose the most appropriate model. It is shown that the model performance increases when using the multiscaling approach. The new model for IDF curves reproduces the data very well and has a reasonable degree of complexity without overfitting on the data.  相似文献   

2.
ABSTRACT

Downscaling of climate projections is the most adapted method to assess the impacts of climate change at regional and local scales. This study utilized both spatial and temporal downscaling approaches to develop intensity–duration–frequency (IDF) relations for sub-daily rainfall extremes in the Perth airport area. A multiple regression-based statistical downscaling model tool was used for spatial downscaling of daily rainfall using general circulation models (GCMs) (Hadley Centre’s GCM and Canadian Global Climate Model) climate variables. A simple scaling regime was identified for 30 minutes to 24 hours duration of observed annual maximum (AM) rainfall. Then, statistical properties of sub-daily AM rainfall were estimated by scaling an invariant model based on the generalized extreme value distribution. RMSE, Nash-Sutcliffe efficiency coefficient and percentage bias values were estimated to check the accuracy of downscaled sub-daily rainfall. This proved the capability of the proposed approach in developing a linkage between large-scale GCM daily variables and extreme sub-daily rainfall events at a given location. Finally IDF curves were developed for future periods, which show similar extreme rainfall decreasing trends for the 2020s, 2050s and 2080s for both GCMs.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

3.
Intensity–duration–frequency (IDF) curves are used extensively in engineering to assess the return periods of rainfall events and often steer decisions in urban water structures such as sewers, pipes and retention basins. In the province of Québec, precipitation time series are often short, leading to a considerable uncertainty on the parameters of the probabilistic distributions describing rainfall intensity. In this paper, we apply Bayesian analysis to the estimation of IDF curves. The results show the extent of uncertainties in IDF curves and the ensuing risk of their misinterpretation. This uncertainty is even more problematic when IDF curves are used to estimate the return period of a given event. Indeed, standard methods provide overly large return period estimates, leading to a false sense of security. Comparison of the Bayesian and classical approaches is made using different prior assumptions for the return period and different estimation methods. A new prior distribution is also proposed based on subjective appraisal by witnesses of the extreme character of the event.  相似文献   

4.
This paper examines the impacts of climate change on future water yield with associated uncertainties in a mountainous catchment in Australia using a multi‐model approach based on four global climate models (GCMs), 200 realisations (50 realisations from each GCM) of downscaled rainfalls, 2 hydrological models and 6 sets of model parameters. The ensemble projections by the GCMs showed that the mean annual rainfall is likely to reduce in the future decades by 2–5% in comparison with the current climate (1987–2012). The results of ensemble runoff projections indicated that the mean annual runoff would reduce in future decades by 35%. However, considerable uncertainty in the runoff estimates was found as the ensemble results project changes of the 5th (dry scenario) and 95th (wet scenario) percentiles by ?73% to +27%, ?73% to +12%, ?77% to +21% and ?80% to +24% in the decades of 2021–2030, 2031–2040, 2061–2070 and 2071–2080, respectively. Results of uncertainty estimation demonstrated that the choice of GCMs dominates overall uncertainty. Realisation uncertainty (arising from repetitive simulations for a given time step during downscaling of the GCM data to catchment scale) of the downscaled rainfall data was also found to be remarkably high. Uncertainty linked to the choice of hydrological models was found to be quite small in comparison with the GCM and realisation uncertainty. The hydrological model parameter uncertainty was found to be lowest among the sources of uncertainties considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The frequency and magnitude of extreme meteorological or hydrological events such as floods and droughts in China have been influenced by global climate change. The water problem due to increasing frequency and magnitude of extreme events in the humid areas has gained great attention in recent years. However, the main challenge in the evaluation of climate change impact on extreme events is that large uncertainty could exist. Therefore, this paper first aims to model possible impacts of climate change on regional extreme precipitation (indicated by 24‐h design rainfall depth) at seven rainfall gauge stations in the Qiantang River Basin, East China. The Long Ashton Research Station‐Weather Generator is adopted to downscale the global projections obtained from general circulation models (GCMs) to regional climate data at site scale. The weather generator is also checked for its performance through three approaches, namely Kolmogorov–Smirnov test, comparison of L‐moment statistics and 24‐h design rainfall depths. Future 24‐h design rainfall depths at seven stations are estimated using Pearson Type III distribution and L‐moment approach. Second, uncertainty caused by three GCMs under various greenhouse gas emission scenarios for the future periods 2020s (2011–2030), 2055s (2046–2065) and 2090s (2080–2099) is investigated. The final results show that 24‐h design rainfall depth increases in most stations under the three GCMs and emission scenarios. However, there are large uncertainties involved in the estimations of 24‐h design rainfall depths at seven stations because of GCM, emission scenario and other uncertainty sources. At Hangzhou Station, a relative change of ?16% to 113% can be observed in 100y design rainfall depths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Rainfall intensity–duration–frequency (IDF) relationships describe rainfall intensity as a function of duration and return period, and they are significant for water resources planning, as well as for the design of hydraulic constructions. In this study, the two‐parameter lognormal (LN2) and Gumbel distributions are used as parent distribution functions. Derivation of the IDF relationship by this approach is quite simple, because it only requires an appropriate function of the mean of annual maximum rainfall intensity as a function of rainfall duration. It is shown that the monotonic temporal trend in the mean rainfall intensity can successfully be described by this parametric function which comprises a combination of the parameters of the quantile function a(T) and completely the duration function b(d) of the separable IDF relationship. In the case study of Aegean Region (Turkey), the IDF relationships derived through this simple generalization procedure (SGP) may produce IDF relationships as successfully as does the well‐known robust estimation procedure (REP), which is based on minimization of the nonparametric Kruskal–Wallis test statistic with respect to the parameters θ and η of the duration function. Because the approach proposed herein is based on lower‐order sample statistics, risks and uncertainties arising from sampling errors in higher‐order sample statistics were significantly reduced. The authors recommend to establish the separable IDF relationships by the SGP for a statistically favorable two‐parameter parent distribution, because it uses the same assumptions as the REP does, it maintains the observed temporal trend in the mean additionally, it is easy to handle analytically and requires considerably less computational effort. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A rainfall intensity–duration–frequency (IDF) relationship was generated by pooling annual maximum rainfall series from 14 recording rain gauges in southern Taiwan. Dimensionless frequency curves, plotted by the growth curve method, can be well fitted by regression equations for a duration ranging from 10 mins to 24 hours. As the parameters in regression equations have a good statistical relationship with average annual rainfall, a generalized regional IDF formula was then formulated. The formula, based on average annual rainfall as an index, can be easily applied to non-recording rain gauges. This paper further applies the mean value first-order second moment (MFOSM) method to estimate the uncertainty of the proposed regional IDF formula. From a stochastic viewpoint, the generalized regional IDF formula can accurately simulate the IDF relationship developed using frequency analysis (EV1) at individual stations. The method can provide both rainfall intensity and variance isohyetal maps for various rainfall durations and return periods over the study area. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The occurrences of extreme pollution events have serious effects on human health, environmental ecosystems, and the national economy. To gain a better understanding of this issue, risk assessments on the behavior of these events must be effectively designed to anticipate the likelihood of their occurrence. In this study, we propose using the intensity–duration–frequency (IDF) technique to describe the relationship of pollution intensity (i) to its duration (d) and return period (T). As a case study, we used data from the city of Klang, Malaysia. The construction of IDF curves involves a process of determining a partial duration series of an extreme pollution event. Based on PDS data, a generalized Pareto distribution (GPD) is used to represent its probabilistic behaviors. The estimated return period and IDF curves for pollution intensities corresponding to various return periods are determined based on the fitted GPD model. The results reveal that pollution intensities in Klang tend to increase with increases in the length of time between return periods. Although the IDF curves show different magnitudes for different return periods, all the curves show similar increasing trends. In fact, longer return periods are associated with higher estimates of pollution intensity. Based on the study results, we can conclude that the IDF approach provides a good basis for decision-makers to evaluate the expected risk of future extreme pollution events.  相似文献   

9.
The goal of quantile regression is to estimate conditional quantiles for specified values of quantile probability using linear or nonlinear regression equations. These estimates are prone to “quantile crossing”, where regression predictions for different quantile probabilities do not increase as probability increases. In the context of the environmental sciences, this could, for example, lead to estimates of the magnitude of a 10-year return period rainstorm that exceed the 20-year storm, or similar nonphysical results. This problem, as well as the potential for overfitting, is exacerbated for small to moderate sample sizes and for nonlinear quantile regression models. As a remedy, this study introduces a novel nonlinear quantile regression model, the monotone composite quantile regression neural network (MCQRNN), that (1) simultaneously estimates multiple non-crossing, nonlinear conditional quantile functions; (2) allows for optional monotonicity, positivity/non-negativity, and generalized additive model constraints; and (3) can be adapted to estimate standard least-squares regression and non-crossing expectile regression functions. First, the MCQRNN model is evaluated on synthetic data from multiple functions and error distributions using Monte Carlo simulations. MCQRNN outperforms the benchmark models, especially for non-normal error distributions. Next, the MCQRNN model is applied to real-world climate data by estimating rainfall Intensity–Duration–Frequency (IDF) curves at locations in Canada. IDF curves summarize the relationship between the intensity and occurrence frequency of extreme rainfall over storm durations ranging from minutes to a day. Because annual maximum rainfall intensity is a non-negative quantity that should increase monotonically as the occurrence frequency and storm duration decrease, monotonicity and non-negativity constraints are key constraints in IDF curve estimation. In comparison to standard QRNN models, the ability of the MCQRNN model to incorporate these constraints, in addition to non-crossing, leads to more robust and realistic estimates of extreme rainfall.  相似文献   

10.
Rainfall intensity–duration–frequency (IDF) curves are used in the design of urban infrastructure. Their estimation is based on rainfall frequency analysis, usually performed on rainfall records from a single gauged station. However, available at‐site record length is often too short to provide accurate estimates for long return periods. In the present study, a general framework for pooled rainfall frequency analysis based on the index‐event model is proposed for IDF estimation at gauged stations. Pooling group formation is defined by the region of influence approach on the basis of the geographical distance similarity measure. Several pooled approaches are defined and evaluated by a procedure through which quantile estimation and uncertainty are assessed. Alternate approaches for the definition of a pooling group are based on different criteria regarding initial pooling group size (and the relationship between size and return period), approaches for assessing pooling group homogeneity, and the use of macroregions in pooling group formation. The proposed framework is applied to identify the preferred approach for pooled rainfall intensity frequency analysis in Canada. Pooled approaches are found to provide more precise estimates than the at‐site approach, especially for long return periods. Pooled parent distribution selection supported the use of the generalized extreme value distribution across the country. Recommendations for pooling group formation include increasing the pooling group size with increases in return period and identifying an appropriate trade‐off between pooling group homogeneity and size for long return periods.  相似文献   

11.
In this work, the multifractal properties of hourly rainfall data recorded at a location in Southern Spain have been related to the scale properties of the corresponding intensity–duration–frequency (IDF) curves. Four parametric models for the IDF curves have been fitted to the quantiles of rainfall obtained using the generalized Pareto frequency distribution function with the extreme data series obtained for the same place. The scaling of the rainfall intensity moments has been analysed, and the empirical moments scaling exponent function has been obtained. The corresponding values of q1 and γ1 have been empirical and theoretically calculated and compared with some characteristics of the different IDF models. Thus, the scaling behaviour of IDF curves has been analysed, and the best model has been selected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrologic engineering designs and analyses often require the specification of design storm which involves rainfall amount, duration and hyetograph. In practice, the determination of design rainfall in hydrologic engineering applications involves the frequency analysis of extreme rainfalls of different durations and the establishment of rainfall hyetograph for the design event under consideration. Sampling errors exist in the estimation of rainfall depth (or intensity) quantiles from frequency analysis, which will be transmitted in the process of determining the design rainfall hyetograph. This paper presents a practical methodological framework based on the bootstrap resampling scheme to assess the uncertainty features associated with the magnitude of estimated rainfall depth/intensity quantiles and the corresponding design hyetographs. The procedure is implemented to quantify uncertainty of design rainfall hyetograph following the Stormwater Drainage Manual of Hong Kong involving the use of rainfall intensity–duration–frequency (IDF) model. Of particular interesting is that the bootstrap resampling scheme implemented herein is modified to handle unequal record period of annual maximum rainfall data series of different durations and to account for their intrinsic correlations. According to the adopted rainfall IDF model, the design rainfall hyetograph is a function of the IDF model coefficients. Due to the correlation among rainfall quantiles of different durations, the IDF coefficients are found to be strongly related in a nonlinear fashion which should not be ignored in the establishment of the design hyetographs.  相似文献   

13.
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.  相似文献   

14.
An appropriate, rapid and effective response to extreme precipitation and any potential flood disaster is essential. Providing an accurate estimate of future changes to such extreme events due to climate change are crucial for responsible decision making in flood risk management given the predictive uncertainties. The objective of this article is to provide a comparison of dynamically downscaled climate models simulations from multiple model including 12 different combinations of General Circulation Model (GCM)–regional climate model (RCM), which offers an abundance of additional data sets. The three major aspects of this study include the bias correction of RCM scenarios, the application of a newly developed performance metric and the extreme value analysis of future precipitation. The dynamically downscaled data sets reveal a positive overall bias that is removed through quantile mapping bias correction method. The added value index was calculated to evaluate the models' simulations. Results from this metric reveal that not all of the RCMs outperform their host GCMs in terms of correlation skill. Extreme value theory was applied to both historic, 1980–1998, and future, 2038–2069, daily data sets to provide estimates of changes to 2‐ and 25‐year return level precipitation events. The generalized Pareto distribution was used for this purpose. The Willamette River basin was selected as the study region for analysis because of its topographical variability and tendency for significant precipitation. The extreme value analysis results showed significant differences between model runs for both historical and future periods with considerable spatial variability in precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The study evaluates relationships between the North Atlantic Oscillation (NAO) index and winter temperatures (including indices of extremes) over Europe in an ensemble of transient simulations of current global climate models (GCMs). We focus on identification of areas in which the NAO index is linked to winter temperatures and temperature extremes in simulations of the recent climate (1961–2000), and evaluate how these relationships change in climate change scenarios for the late 21st century (2071–2100). Most GCMs are able to reproduce main features of the observed links. The NAO index is more important for cold than warm extremes, which is also reproduced by the GCMs. However, all GCMs underestimate the magnitude of the NAO influence on cold extremes when averaged over northern and western Europe. For future scenarios, the links between the NAO and temperatures are mostly analogous to those in the recent climate, except for one GCM (CM3) in which the influence of the NAO on temperature almost disappears over whole Europe. This suggests that future scenarios from this particular GCM should be evaluated with caution. The NAO index is found to represent a useful covariate that explains an important fraction of variability of cold extremes in winter, and its incorporation into extreme value models for daily temperatures (and their possible changes under climate change) may improve performance of these models and reliability of estimates of extremes and their uncertainty.  相似文献   

16.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study demonstrates the use of spatially downscaled, monthly general circulation model (GCM) rainfall and temperature data to drive the established HyMOD hydrological model to evaluate the prospective effects of climate change on the fluvial run‐off of the River Derwent basin in the UK. The evaluation results of this monthly hydrological model using readily available, monthly GCM data are consistent with studies on nearby catchments employing high‐temporal resolution data, indicating that useful hydro‐climatic planning studies may be possible using standard datasets and modest computational resources. HyMOD was calibrated against 5 km2 gridded UK Climate Projections dataset data and then driven using monthly spatially interpolated (~5 km2) outputs from Hadley Centre Coupled Model, version 3 and the Canadian Centre for Climate Modelling and Analysis for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC‐SRES) A2a and B2a covering the 2020s, 2050s and 2080s. Results for both GCMs project a decrease in annual run‐off in both GCM models and scenarios with higher values in the summer/autumn months, whereas an increase in the later winter months. Both Hadley Centre Coupled Model, version 3 and the Canadian Centre for Climate Modelling and Analysis show higher ranges of uncertainty during the winter season with higher values of run‐off associated with December in all three simulation periods and two scenarios. A seasonal comparison of run‐off simulations shows that both GCMs give similar results in summer and autumn, whereas disparities due to GCM uncertainties are more conspicuous in winter and spring. In this study, both the GCMs under A2a scenario have demonstrated the high possibility of time shift in monthly average peak run‐offs in the Derwent River by 2080s in comparison with the early 21st century. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Uncertainty analysis in statistical modeling of extreme hydrological events   总被引:6,自引:4,他引:2  
With the increase of both magnitude and frequency of hydrological extreme events such as drought and flooding, the significance of adequately modeling hydrological extreme events is fully recognized. Estimation of extreme rainfall/flood for various return periods is of prime importance for hydrological design or risk assessment. However, due to knowledge and data limitation, uncertainty involved in extrapolating beyond available data is huge. In this paper, different sources of uncertainty in statistical modeling of extreme hydrological events are studied in a systematic way. This is done by focusing on several key uncertainty sources using three different case studies. The chosen case studies highlight a number of projects where there have been questions regarding the uncertainty in extreme rainfall/flood estimation. The results show that the uncertainty originated from the methodology is the largest and could be >40% for a return period of 200 years, while the uncertainty caused by ignoring the dependence among multiple hydrological variables seems the smallest. In the end, it is highly recommended that uncertainty in modeling extreme hydrological events be fully recognized and incorporated into a formal hydrological extreme analysis.  相似文献   

19.
Establishing the rainfall intensity–duration–frequency (IDF) relations by the conventional method, the use of parametric distribution models has the advantage of automatic compliance of monotonicity condition of rainfall intensity and frequency. However, fitting rainfall data to a distribution separately by individual duration may possibly produce undulation and crossover of IDF curves which does not comply physical reality. This frequently occurs when rainfall record length is relatively short which often is the case. To tackle this problem this study presents a methodological framework that integrates the third-order polynomial normal transform (TPNT) with the least squares (LS) method to establish rainfall IDF relations by simultaneously considering multi-duration rainfall data. The constraints to preserve the monotonicity and non-crossover in the IDF relations can be incorporated easily in the LS-based TPNT framework. Hourly rainfall data at Zhongli rain gauge station in Taiwan with 27-year record are used to establish rainfall IDF relations and to illustrate the proposed methodology. Numerical investigation indicates that the undulation and crossover behavior of IDF curves can be effectively circumvented by the proposed approach to establish reasonable IDF relations.  相似文献   

20.
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster–Shafer (D–S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D–S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D–S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D–S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster–Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D–S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D–S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号