首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most vegetated land surfaces contain macropores that may have a significant effect on the rate of infiltration of water under ponded conditions on the ground surface. Owing to the small-scale variations of the land topography (microtopography), only portions of the land area may get ponded during the process of overland flow. As the macropores transmit water at much higher rates than the primary soil matrix, higher macropore activation in ponded areas produces larger effective infiltration rates into the soil. Therefore, overland flow and infiltration into the macroporous vadose zone are interrelated. Representing the microtopographic variation of the land surface by a simple sine wave function, a method was developed to relate the ponding area to the average ponding depth which was determined by overland flow. A numerical model coupling overland flow and infiltration into the macroporous vadose zone was developed. Overland flow was simulated using the St. Venant equations with the inertia terms neglected. A single macropore model was used to simulate the infiltration into the macroporous vadose zone. The interaction between overland flow and the infiltration into the macroporous vadose zone was analyzed for a hypothetical watershed. The sensitivity analysis revealed that the interaction of macropore flow and overland flow is significant. For the conditions tested, the macropore flow and the overland flow were found to be more sensitive to the macroporosity and less sensitive to the microtopographic surface variation.  相似文献   

2.
This paper describes a two‐dimensional hydrodynamic model that characterizes surface runoff process resulting from a varying rainfall intensity event, on an infiltrating soil surface. The soil surface has spatially varied soil physical, hydraulic and microtopographic characteristics. Infiltration process is modelled with the Philip two‐term equation and the time before ponding approximated with the time compression algorithm. Vegetation is modelled as a dynamic component with the modified Gash model. The equation is solved with a modified second order Leapfrog explicit finite difference scheme with centred time and space derivatives. The model was validated with standard analytical solutions. Evaluation with results from field campaigns in the Volta Basin of West Africa during the 2002 rainfall season indicates good agreement, with r2 values ranging from 0·89 to 0·96. The developed method will be useful in studying the dynamics of surface runoff generation under complex microtopographic conditions, spatially varying soil hydraulic characteristics and temporally dynamic rainfall intensity, as found in many tropical catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Conventional roughness–resistance relationships developed for pipe and open‐channel flows cannot accurately describe shallow overland flows over natural rough surfaces. This paper develops a new field methodology combining terrestrial laser scanning (TLS) and overland flow simulation to provide a high‐resolution dataset of surface roughness and overland flow hydraulics as simulated on natural bare soil surfaces. This method permits a close examination of the factors controlling flow velocity and a re‐evaluation of the relationship between surface roughness and flow resistance. The aggregate effect of flow dynamics, infiltration and depression storage on retarding the passage of water over a surface is important where runoff‐generating areas are distant from well‐defined channels. Experiments to separate these effects show that this ‘effective resistance’ is dominated by surface roughness. Eight measurements of surface roughness are found to be related to flow resistance: standard deviation of elevations, inundation ratio, pit density (measured both perpendicular and parallel to the flow direction), slope, median depth, skewness of the depth distribution and frontal area. Hillslope position is found to affect the significant roughness measures. In contrast, infiltration rate has little effect on the velocity of water fronts advancing over the soil surfaces examined here and the effect of depression storage is limited. Overland flow resistance is depth dependent where complex microtopographic structures are progressively inundated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

5.
A series of 188 rainfall plot simulations was conducted on grass, shrub, oak savanna, and juniper sites in Arizona and Nevada. A total of 897 flow velocity measurements were obtained on 3.6% to 39.6% slopes with values ranging from 0.007 m s‐1 to 0.115 m s‐1. The experimental data showed that shallow flow velocity on rangelands was related to discharge and ground litter cover and was largely independent of slope gradient or soil characteristics. A power model was proposed to express this relationship. These findings support the slope–velocity equilibrium hypothesis. Namely, eroding soil surfaces evolve such that steeper areas develop greater hydraulic roughness. As a result overland flow velocity becomes independent of the slope gradient over time. Our findings have implications for soil erosion modeling suggesting that hydraulic friction is a dynamic, slope and discharge dependent property. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Soil surface roughness not only delays overland flow generation but also strongly affects the spatial distribution and concentration of overland flow. Previous studies generally aimed at predicting the delay in overland flow generation by means of a single parameter characterizing soil roughness. However, little work has been done to find a link between soil roughness and overland flow dynamics. This is made difficult because soil roughness and hence overland flow characteristics evolve differently depending on whether diffuse or concentrated erosion dominates. The present study examined whether the concept of connectivity can be used to link roughness characteristics to overland flow dynamics. For this purpose, soil roughness of three 30‐m2 tilled plots exposed to natural rainfall was monitored for two years. Soil micro‐topography was characterized by means of photogrammetry on a monthly basis. Soil roughness was characterized by the variogram, the surface stream network was characterized by network‐based indices and overland flow connectivity was characterized by Relative Surface Connection function (RSCf) functional connectivity indicator. Overland flow hydrographs were generated by means of a physically‐based overland flow model based on 1‐cm resolution digital elevation models. The development of eroded flow paths at the soil surface not only reduced the delay in overland flow generation but also resulted in a higher continuity of high flow velocity paths, an increase in erosive energy and a higher rate of increase of the overland flow hydrograph. Overland flow dynamics were found to be highly correlated to the RSCf characteristic points. By providing information regarding overland flow dynamics, the RSCf may thus serve as a quantitative link between soil roughness and overland flow generation in order to improve the overland flow hydrograph prediction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A simple model describing the transformation of effective rainfall to direct runoff through the overland flow mechanism is presented. The model is based on the classical representation of a watershed by a combination of planes and channels. The dynamics of overland flow in each plane is simulated by the non-linear kinematic wave, but the outflow from a given plane is concentrated in the middle of the corresponding drainage channel. The water routing in the channels is carried out by a piece-wise linearized formulation in space of the kinematic wave approximation. Using synthetic events on 10 watersheds, the model was tested by comparing it with results obtained by applying the non-linear kinematic wave to all the elements of the watershed. The model was found to be adequate, even in a form that simplifies the geometric features of the planes through an averaging procedure based on the Horton–Strahler ordering scheme of the watershed. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Soil moisture dynamics have a significant effect on overland flow generation. Catchment aspect is one of the major controlling factors of overland flow and soil moisture behaviour. A few experimental studies have been carried out in the uneven topography of the Himalayas. This study presents plot‐scale experiments using portable rainfall simulator at an altitude of 1,230 m above mean sea level and modelling of overland flow using observed datasets. Two plots were selected in 2 different aspects of Aglar watershed of Lesser Himalaya; the agro‐forested (AF) plot was positioned at the north aspect whereas the degraded (DE) plot was located at the south aspect of the hillslope. HS flumes and rain gauges were installed to measure the runoff at the outlet of the plot and the rainfall depth during rainfall simulation experiments. Moreover, 10 soil moisture sensors were installed at upslope and downslope locations of both the plots at 5, 15, 25, 35, and 45 cm depth from ground level to capture the soil moisture dynamics. The tests were conducted at intensities of 79.8 and 75 mm/hr in AF plot and 82.2 and 72 mm/hr in the DE plot during Test 1 and Test 2, respectively. The observed data indicate the presence of reinfiltration process only in the AF plot. The high water holding capacity and the presence of reinfiltration process results in less runoff volume in the AF plot compared with the DE plot. The Hortonian overland flow mechanism was found to be the dominant overland flow mechanism as only a few layers of top soil get saturated during all of the rainfall–runoff experiments. The runoff, rainfall, and soil moisture data were subsequently used to calibrate the parameters of HYDRUS‐2D overland flow module to simulate the runoff hydrograph and soil moisture. The components of hydrograph were evaluated in terms of peak discharge, runoff volume and time of concentration, the results were found to be within the satisfactory range. The goodness of fit of simulated hydrographs were more than 0.85 and 0.95 for AF and DE plot, respectively. The model produced satisfactory simulation results of soil moisture for all of the rainfall–runoff experiments. The HYDRUS‐2D overland flow module was found promising to simulate the runoff hydrograph and soil moisture in plot‐scale research.  相似文献   

9.
Several studies revealed that peak discharges (Q) observed in a nested drainage network following a runoff-generating rainfall event exhibit power law scaling with respect to drainage area (A) as Q(A) = αAθ. However, multiple aspects of how rainfall-runoff process controls the value of the intercept (α) and the scaling exponent (θ) are not fully understood. We use the rainfall-runoff model CUENCAS and apply it to three different river basins in Iowa to investigate how the interplay among rainfall intensity, duration, hillslope overland flow velocity, channel flow velocity, and the drainage network structure affects these parameters. We show that, for a given catchment: (1) rainfall duration and hillslope overland flow velocity play a dominant role in controlling θ, followed by channel flow velocity and rainfall intensity; (2) α is systematically controlled by the interplay among rainfall intensity, duration, hillslope overland flow velocity, and channel flow velocity, which highlights that it is the combined effect of these factors that controls the exact values of α and θ; and (3) a scale break occurs when runoff generated on hillslopes runs off into the drainage network very rapidly and the scale at which the break happens is determined by the interplay among rainfall duration, hillslope overland flow velocity, and channel flow velocity.  相似文献   

10.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The paper focusses on connectivity in the context of infiltration‐excess overland flow and its integrated response as slope‐base overland flow hydrographs. Overland flow is simulated on a sloping surface with some minor topographic expression and spatially differing infiltration rates. In each cell of a 128 × 128 grid, water from upslope is combined with incident rainfall to generate local overland flow, which is stochastically routed downslope, partitioning the flow between downslope neighbours. Simulations show the evolution of connectivity during simple storms. As a first approximation, total storm runoff is similar everywhere, discharge increasing proportionally with drainage area. Moderate differences in plan topography appear to have only a second‐order impact on hydrograph form and runoff amount. Total storm response is expressed as total runoff, runoff coefficient or total volume infiltrated; each plotted against total storm rainfall, and allowing variations in average gradient, overland flow roughness, infiltration rate and storm duration. A one‐parameter algebraic expression is proposed that fits simulation results for total runoff, has appropriate asymptotic behaviour and responds rationally to the variables tested. Slope length is seen to influence connectivity, expressed as a scale distance that increases with storm magnitude and can be explicitly incorporated into the expression to indicate runoff response to simple events as a function of storm size, storm duration, slope length and gradient. The model has also been applied to a 10‐year rainfall record, using both hourly and daily time steps, and the implications explored for coarser scale models. Initial trails incorporating erosion continuously update topography and suggest that successive storms produce an initial increase in erosion as rilling develops, while runoff totals are only slightly modified. Other factors not yet considered include the dynamics of soil crusting and vegetation growth. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A simple model of raindrop erosion—the combined effects of the detachment of sediment by raindrops and its transport by splash or by overland flow—is developed to examine the role of this process in the formation of desert pavements. Application of the model to soils in areas of existing pavement initially simulates the formation of pavements, but the changing sediment size distributions lead to the subsequent destruction of these modelled surfaces. An improved model that accounts for the feedback effects of the changing size distributions on infiltration and microtopography is then developed. Incorporating these effects allows simulated pavements to be maintained over longer periods. The model yields desert pavements whose particle size compositions differ in response to differences in initial soil characteristics, slope and rainfall intensity. This model is tested against empirical data from a site where there is intershrub pavement and associated mounds of fines beneath desert shrubs. The results successfully predict the accumulation of fines under shrubs but underestimate the development of the pavement between shrubs. These findings suggest that the raindrop erosion mechanism on its own cannot account for the development of the pavement and that some other mechanism leading to the surface concentration of coarse particles must also be operating.  相似文献   

13.
Distributed physically based erosion and phosphorus (P) transport models, run by the overland flow model described in Taskinen and Bruen (2006. Hydrological Processes 20 : this issue), are described. In the erosion model, the additional components to the basic model were the outflow of the particles by infiltration and a new model component, i.e. deposition when rainfall stops. Two ways of calculating the shielding factor due to the flow depth were compared. The P transport model had both dissolved P (DP) and particulate P (PP) components. The processes included in the DP model were desorption from the soil surface, advection, storage in the overland flow and infiltration. The PP model accounted for advection, storage in the flow, infiltration, detachment from the soil surface by flow and rainfall and deposition both when transport capacity of suspended solids (SS) is exceeded and when rainfall ceases. When the models were developed and validated in small agricultural fields of cohesive soil types in southern Finland, comparisons were made between corresponding processes and the significance of added components were estimated in order to find out whether increased model complexity improves the model performance. The sedigraphs were found to follow the dynamics of rainfall, emphasizing the importance of the rainfall splash component. The basic model was too slow to react to changes in rainfall and flow rates, but infiltration and deposition that acts during the cessation in rainfall improved the model significantly by enabling the modelled SS to fall sharply enough. The shielding effect of flow depth from the splash detachment was found to play a significant role. Transport capacity should also be included in erosion models when they are applied to cohesive soils. In this study, the Yalin method worked well. A strong correlation was obvious between the measured SS and total P concentrations, indicating that the main form of P in runoff is PP. This emphasizes the importance of a good sediment transport model in P transport modelling. The submodel used for DP desorption from the soil surface produced plausible results without any calibration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
IINTRODUCTIONWhileriverflowsareusuallydeepandturbulent,overlandflowisextremelyshallowandcanbelaminar,transitionalandturbulent.Becauseoftheshallownessoftheflolw,overlandflowhydraulicsisgreatlyaffectedbysurfaceroughness,raindropimpact,andinthecaseoflaminarflow,flui(Iviscosity.Theinitiationofsedimentmovementinoverlandflowisthereforeexpectedtodifferfromthatinriverflows.InriverstUdies,bedshearStressgbhastraditionallybeenusedtocharacterizethecriticalflowconditionatwhichsedimentbeginstomove.At…  相似文献   

15.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

16.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

19.
Observed scale effects of runoff on hillslopes and small watersheds derive from complex interactions of time-varying rainfall rates with runoff, infiltration and macro- and microtopographic structures. A little studied aspect of scale effects is the concept of water depth-dependent infiltration. For semi-arid rangeland it has been demonstrated that mounds underneath shrubs have a high infiltrability and lower lying compacted or stony inter-shrub areas have a lower infiltrability. It is hypothesized that runoff accumulation further downslope leads to increased water depth, inundating high infiltrability areas, which increases the area-averaged infiltration rate. A model was developed that combines the concepts of water depth-dependent infiltration, partial contributing area under variable rainfall intensity, and the Green–Ampt theory for point-scale infiltration. The model was applied to rainfall simulation data and natural rainfall–runoff data from a small sub-watershed (0.4 ha) of the Walnut Gulch Experimental Watershed in the semi-arid US Southwest. Its performance to reproduce observed hydrographs was compared to that of a conventional Green–Ampt model assuming complete inundation sheet flow, with runon infiltration, which is infiltration of runoff onto pervious downstream areas. Parameters were derived from rainfall simulations and from watershed-scale calibration directly from the rainfall–runoff events. The performance of the water depth-dependent model was better than that of the conventional model on the scale of a rainfall simulator plot, but on the scale of a small watershed the performance of both model types was similar. We believe that the proposed model contributes to a less scale-dependent way of modeling runoff and erosion on the hillslope-scale.  相似文献   

20.
There is a dearth of knowledge on the runoff processes of eucalypt woodland communities in the semi-arid tropics of Australia. The work was undertaken on a 100 m transect of a 0·8 degree hillslope typical of the ‘smooth plainlands’ of central-north Queensland. This paper introduces a new experimental design for measuring overland flow in such areas by way of a cascade system of unbounded runoff plots which allow the inputs and outputs between troughs to be calculated. Most storms generate overland flow. Time to overland flow ranges between 1 and 18 min where rain intensities are above 10mm hr−1 and when the average detention storage of 3·6 mm is exceeded. The bare soil surfaces within the scattered grass understory control the runoff generation process through the temporal variability of field saturated hydraulic conductivity. The study demonstrated that overland flow is mainly redistributed over the freely-draining oxic soil. Some areas export more overland flow than they gain from upslope (runoff), others gain more overland flow than they export (runon). Over the study period only 2 per cent of total rain is transferred out of this 100 m transect as overland flow due to the short duration of storms, the relatively high soil permeability, and the low slope angle. The remainder adds to the large soil water store or deep drainage. The variability of runoff–runon over these ‘smooth plainlands’ highlights how results from bounded plots would be misleading in such areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号