首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory experiments are described which explore the dynamical consequences of buoyant convective upflow observed above hot pyroclastic flows. In nature, the convection is produced by the hot ash particles exchanging heat with air mixed into the front and top of the pyroclastic flow. This effect on the buoyancy due to the mixing of air and ash has been modelled in the laboratory using mixtures of methanol and ethylene glycol (MEG), which have a nonlinear density behaviour when mixed with water. Intermediate mixtures of these fluids can be denser than either initial component, and so the laboratory experiments were inverted models of the natural situation. We studied MEG flowing up under a sloping roof in a tank filled with water. The experiments were performed both in a narrow channel and on a laterally unconfined slope. The flow patterns were also compared with those of conventional gravity currents formed using fresh and salt water. The presence of the region of reversed buoyancy outside the layer flowing along the slope had two significant effects. First, it periodically protected the flow from direct mixing with the environment, resulting in pulses of relatively undiluted fluid moving out intermittently ahead of the main flow. Second, it produced a lateral inflow towards the axis of the current which kept the current confined to a narrow tongue, even on a wide slope.In pyroclastic flows the basal avalanche portion has a much larger density contrast with its surroundings than the laboratory flows. Calculations show that mixing of air into the dense part of a pyroclastic flow cannot generate a mixture that is buoyant in the atmosphere. However, the overlying dilute ash cloud can behave as a gravity current comparable in density contrast to the laboratory flows and can become buoyant, depending on the temperature and ash content. In the August 7th pyroclastic flow of Mount St. Helens, Hoblitt (1986) describes pulsations in the flow front, which are reminiscent of those observed in the experiments. As proposed by Hoblitt, the pulsations are caused by the ash cloud accelerating away from the front of the dense avalanche as a density current. The ash cloud then mixes with more air, becomes buoyant and lifts off the ground, allowing the avalanche to catch up with and move ahead of the cloud. The pulsing behaviour at the fronts of pyroclastic flows could account for the occurrence of cross-bedded layer 1 deposits which occur beneath layer 2 deposits in many sequences.  相似文献   

2.
This study presents two-dimensional direct numerical simulations for sediment-laden current with higher density propagating forward through a lighter ambient water.The incompressible NavierStokes equations including the buoyancy force for the density difference between the light and heavy fluids are solved by a finite difference scheme based on a structured mesh.The concentration transport equations are used to explore such rich transport phenomena as gravity and turbidity currents.Within the framework of an Upwinding Combined Compact finite Difference(UCCD)scheme,rigorous determination of weighting coefficients underlies the modified equation analysis and the minimization of the numerical modified wavenumber.This sixth-order UCCD scheme is implemented in a four-point grid stencil to approximate advection and diffusion terms in the concentration transport equations and the first-order derivative terms in the Navier-Stokes equations,which can greatly enhance convective stability and increase dispersive accuracy at the same time.The initial discontinuous concentration field is smoothed by solving a newly proposed Heaviside function to prevent numerical instabilities and unreasonable concentration values.A two-step projection method is then applied to obtain the velocity field.The numerical algorithm shows a satisfying ability to capture the generation,development,and dissipation of the Kelvin-Helmholz instabilities and turbulent billows at the interface between the current and the ambient fluid.The simulation results also are compared with the data in published literatures and good agreements are found to prove that the present numerical model can well reproduce the propagation,particle deposition,and mixing processes of lock-exchange gravity and turbidity currents.  相似文献   

3.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   

4.
《国际泥沙研究》2020,35(5):504-515
A numerical study of propagation of cohesive fluid mud gravity currents in the form of lock-exchange was done using the OpenFOAM open source toolbox. An Eulerian approach solution for three separate phases was developed by incorporating a rheological model to predict the front position of cohesive fluid mud gravity currents. The model also simulates features in the complete movement phases including slumping, self-similar, and viscous in which the dynamics of propagation are affected by the balance of viscous and buoyancy forces, and the inertia force is negligible. The influence of using different turbulence models containing sub-grid scale (SGS), modified SGS, detached eddy simulation (DES), delayed-detached eddy simulation (DDES), Launder-R eece-Rodi (LRR), and k-ɛ models on the accuracy of simulation results was evaluated by comparing with available experimental data. The results show that the selection of the proper turbulence model is one of the most important issues for this type of the numerical modeling. The more efficient turbulence model was suggested and tabulated for each stage of propagation and different selected concentrations of 1,045, 1,140, and 1,214 g/L. Although different turbulence models (except k-ɛ) lead to front propagation dynamic simulation results that are in good agreement with the experimental measurements in the early stage of propagation for low concentrations, only DES, SGS, and modified SGS are able to capture the Kelvin-Helmholtz instability vortex shapes at the dense fluid interface, which is the main characteristic of the gravity current through the slumping phase. The calculated accuracies of SGS and modified SGS in predicting gravity current propagation for the both self-similar and viscous phases also are slightly better than DES, DDES, and LRR model results. The results of this study confirmed the performance and efficiency of the modified SGS model in which the interaction coefficients between phases are calibrated for the numerical modeling of fluid mud gravity current propagation.  相似文献   

5.
The in situ records of a cruise in September 1995 off the Huanghe mouth and laboratory measurements indicate that the shear front off the river mouth results from the phase difference between the nearshore and offshore tides and plays significant role in the river-laden sediment dispersal. Two types of shear front, identified from the behaviors of currents inside and outside the shear front, alternate over tidal cycle, each of which lasts for ∼2–3 h. The dispersal patterns of suspended sediment at the stations inside and outside the shear front are distinctly different from each other. In addition, the gravity-driven hyperpycnal flow generated near the mouth is terminated within shallow water due to the barrier effect of shear front. A dispersal pattern of river-laden suspended sediment in the shear frontal zone is proposed to interpret the difference of sediment transport inside and outside the shear front. The fresh and highly turbid river effluents discharge to the sea during ebb tides and are transported northwestwards inside the shear front under the combined impacts of northward ebb currents, down-slope transport of hyperpycnal flow and confining action of shear front; after partially mixing with the ambient seawater the river effluents are then transported southeastwards outside the shear front along the flood currents, causing the intermittent increase in suspended sediment concentration and corresponding decrease in salinity outside the shear front. Over annual time scale the subaqueous slope has a geomorphological response to the ephemeral shear front. Most of the river-laden sediment deposit inside the shear front with a high accumulation rate, while erosion is dominant outside the shear front due to the lack of sediment supply.  相似文献   

6.
Abstract

The instability of a current with a geostrophic surface density front is investigated by means of a reduced gravity model having a velocity profile with nearly uniform potential vorticity. It is shown that currents are unstable when the mean potential vorticity decreases toward the surface front at the critical point of the frontal trapped waves investigated by Paldor (1983). This instability is identical with that demonstrated by Killworth (1983) in the longwave limit.

The cross-stream component of mass flux and the rates of energy conversions among the five energy forms defined by Orlanski (1968) are also calculated. The main results are as follows, (a) The mass flux toward the surface front is positive near the front and negative around the critical point. The positive mass flux near the front does not vanish at the position of the undisturbed surface front, so that the mean position of the front moves outward and the region of the strong current spreads. (b) The potential energy of the mean flow integrated over the fluid is released through the work done by the force of the pressure gradient of the mean flow on the fluid, and is converted into the kinetic energy of the mean flow. (c) In the critical layer, the mean flow is rapidly accelerated with the growth of the unstable wave. This acceleration is caused by the rapid phase shift of the unstable wave in the critical layer.  相似文献   

7.
《国际泥沙研究》2020,35(3):278-286
Flow past wall-mounted cylindrical structures is commonly encountered in natural rivers where piers of bridge crossings or vegetation stalks are common within channels.In the current study,the influence of cylindrical structures on flow/bathymetric alterations for three different permeabilities is explored via two-dimensional numerical modeling.In model construction processes,the structure permeability is varied with the surface void ratio along the perimeter of the cylinder,i.e.the density of emergent and submerged solid elements is used to delineate the cylinder boundaries.The validation of this model is guaranteed through careful comparison with experimental data obtained for similar hydrodynamic conditions and cylinder properties.The validated model then is applied to investigate flow properties and scour and deposition patterns with structure permeabilities of 0.0,0.38,and 0.62.Simulated results show that a permeable structure has less impeding effects on flow than a solid cylinder.The wake velocity reduction decreases 38% with a 63% increase in the structure permeability due to increasing intensity of the bleeding flow through surface voids,causing less flow contraction and diversion,lower turbulent kinetic energy,and lower lee-side scour around the permeable structure and less deposition downstream under live-bed conditions.  相似文献   

8.
Density currents are caused by a difference in density,though low,of an entering fluid with the ambient fluid.This type of current is two-phased and found on riverbeds or in reservoirs behind dams,and is nonlinear in nature,complex,and sensitive to initial conditions.Fractal geometry is used as a powerful tool for studying complex natural phenomena.Using experimental studies and changes in inlet current conditions,the fractal and multi-fractal analyses of the interface between the density current and the ambient fluid were done.In addition,a search was made to find a possible connection between the nonlinear patterns.According to the results,with an increase in the inlet discharge and inlet density of the current the fractal dimension decreased.Further,the smaller the range of the singularity spectrum diagram was,i.e.,the more it was less than 0.34,the lower the system's tendency was to be multi-fractal,and the system sensitive to large local changes.In the interface between the density current and the ambient fluid,using the fractal dimension-based Richardson number could improve experimental data by 12.4%.Moreover,with an increase in the Richardson number,the Reynolds number of the current decreased.Further,upon considering the fractal dimension,the Reynolds number improved by 23%and a good correlation with a coefficient of determination of 0.76.  相似文献   

9.
Marine shallow-water to emergent volcanoes have been described in detail, but comparable englacial centres are not well documented. Brown Bluff is a Pleistocene, shallow water, alkali basaltic volcano whose deposits were ponded within an englacial lake, enclosed by ice >400 m thick. Its evolution is divided chronologically into pillow volcano, hyalotuff cone, slope failure and hyaloclastite delta/subaerial stages. Seventeen lithofacies and five structural units (A-E) are recognised and described. The pillow volcano stage (Unit A) is similar to those of many submarine seamount volcanoes. It comprises extrusive and intrusive pillow lavas draped by slumped hyaloclastite. Units B and D define the hyalotuff cone stage, which was centred on a summit vent(s), and comprises slumped, poorly sorted hyalotuffs redeposited downslope by sediment gravity flows and ponded against an ice barrier. This stage also includes water-cooled subaerial lavas and massive hyalotuffs ponded within a crater. Cone construction was interrupted by drainage of the lake and slope failure of the northeast flank, represented by debris avalanche-type deposits (Unit C). Unit E represents the youngest stage and consists of a Gilbert-type hyaloclastite delta(s), which prograded away from a summit vent(s), and compound subaerial lavas. A second drainage episode allowed subaerial lavas to accumulate in the surrounding trough.  相似文献   

10.
We investigated deep-seated gravitational slope deformation (DSGSD) and slow mass movements in the southern Tien Shan Mountains front using synthetic aperture radar (SAR) time-series data obtained by the ALOS/PALSAR satellite. DSGSD evolves with a variety of geomorphological changes (e.g. valley erosion, incision of slope drainage networks) over time that affect earth surfaces and, therefore, often remain unexplored. We analysed 118 interferograms generated from 20 SAR images that covered about 900 km2. To understand the spatial pattern of the slope movements and to identify triggering parameters, we correlated surface dynamics with the tectono-geomorphic processes and lithologic conditions of the active front of the Alai Range. We observed spatially continuous, constant hillslope movements with a downslope speed of approximately 71 mm year−1 velocity. Our findings suggest that the lithological and structural framework defined by protracted deformation was the main controlling factor for sustained relief and, consequently, downslope mass movements. The analysed structures revealed integration of a geological/structural setting with the superposition of Cretaceous–Paleogene alternating carbonatic and clastic sedimentary structures as the substratum for younger, less consolidated sediments. This type of structural setting causes the development of large-scale, gravity-driven DSGSD and slow mass movement. Surface deformations with clear scarps and multiple crest lines triggered planes for large-scale deep mass creeps, and these were related directly to active faults and folds in the geologic structures. Our study offers a new combination of InSAR techniques and structural field observations, along with morphometric and seismologic correlations, to identify and quantify slope instability phenomena along a tectonically active mountain front. These results contribute to an improved natural risk assessment in these structures. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd  相似文献   

11.
Results from numerical simulations of idealised, 2.5-dimensional Boussinesq, gravity currents on an inclined plane in a rotating frame are used to determine the qualitative and quantitative characteristics of such currents. The current is initially geostrophically adjusted. The Richardson number is varied between different experiments. The results demonstrate that the gravity current has a two-part structure consisting of: (1) the vein, the thick part that is governed by geostrophic dynamics with an Ekman layer at its bottom, and (2) a thin friction layer at the downslope side of the vein, the thin part of the gravity current. Water from the vein detrains into the friction layer via the bottom Ekman layer. A self consistent picture of the dynamics of a gravity current is obtained and some of the large-scale characteristics of a gravity current can be analytically calculated, for small Reynolds number flow, using linear Ekman layer theory. The evolution of the gravity current is shown to be governed by bottom friction. A minimal model for the vein dynamics, based on the heat equation, is derived and compares very well to the solutions of the 2.5-dimensional Boussinesq simulations. The heat equation is linear for a linear (Rayleigh) friction law and non-linear for a quadratic drag law. I demonstrate that the thickness of a gravity current cannot be modelled by a local parameterisation when bottom friction is relevant. The difference between the vein and the gravity current is of paramount importance as simplified (streamtube) models should model the dynamics of the vein rather than the dynamics of the total gravity current. In basin-wide numerical models of the ocean dynamics the friction layer has to be resolved to correctly represent gravity currents and, thus, the ocean dynamics.  相似文献   

12.
The complex multi-directional interactions between hydrological, biological and fluvial processes govern the formation and evolution of river landscapes. In this context, as key geomorphological agents, riparian trees are particularly important in trapping sediment and constructing distinct landforms, which subsequently evolve to larger ones. The primary objective of this paper is to experimentally investigate the scour/deposition patterns around different forms of individual vegetation elements. Flume experiments were conducted in which the scour patterns around different representative forms of individual in-stream obstructions (solid cylinder, hexagonal array of circular cylinders, several forms of emergent and submerged vegetation) were monitored by means of a high-resolution laser scanner. The three dimensional scour geometry around the simulated vegetation elements was quantified and discussed based on the introduced dimensionless morphometric characteristics. The findings reveal that the intact vegetation forms generated two elongated scour holes at the downstream with a pronounced ridge. For the impermeable form of the plant, the scour got localized, more deposition was detected within the monitoring zone, and the distance between the obstruction and deposition zone became shorter. It is also shown that with the effect of bending and the subsequent decrease of the projected area of the plant and the increase of bulk volume, the characteristic scour values decrease compared to the intact version, and the scour zone obtains a more elongated form and expands in the downstream direction.  相似文献   

13.
The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t < 1/f), intermediate (t 1/f), and main (t 1/f) stages, where f is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.  相似文献   

14.
Surface soil moisture has been extensively studied for various land uses and landforms. Although many studies have reported potential factors that control surface soil moisture over space or time, the findings have not always been consistent, indicating a need for identification of the main factors. This study focused on the static controls of topographic, soil, and vegetation features on surface soil moisture in a steep natural forested headwater catchment consisting of three hillslope units of a gully area, side slope, and valley‐head slope. Using a simple correlation analysis to investigate the effects of the static factors on surface soil moisture at depths of 0–20 cm at 470 points in 13 surveys, we addressed the characteristics of surface soil moisture and its main controlling factors. The results indicated that the mean of surface soil moisture was in the decreasing order of gully area > valley‐head slope > side slope. The relationship between the mean and standard deviation of surface soil moisture showed a convex‐upward shape in the headwater catchment, a negative curvilinear shape in the gully area, and positive curvilinear shapes at the side and valley‐head slopes. At the headwater catchment and valley‐head slope, positive contributions of soil porosity and negative contributions of slope gradient and saturated hydraulic conductivity were the main controlling factors of surface soil moisture under wetter conditions, whereas positive contributions of topographic wetness index and negative contributions of vegetation density were the main controlling factors of surface soil moisture under drier conditions. At the side slope underlain by fractured bedrocks, only saturated hydraulic conductivity and vegetation density were observed to be the controlling factors. Surface soil moisture in the gully area was mainly affected by runoff rather than were static features. Thus, using hillslope units is effective for approximately estimating the hydrological behaviours of surface moisture on a larger scale, whereas dependency between the main static factors and moisture conditions is helpful for estimating the spatial distributions of surface moisture on a smaller scale.  相似文献   

15.
16.
Following a previous attempt to reproduce miniature sorted patterns on a level surface, we report the results of a full‐scale laboratory simulation on frost sorting produced by needle ice activity on inclined surfaces. Four models, with different slope gradients (5°, 7°, 9°, 11°), were designed. Stones 6 mm in diameter placed in a grid covered 20% of the surface of frost‐susceptible water‐saturated soil. These models were subjected to 20–40 freeze–thaw cycles between 10°C and ?5°C in 12 hours. The evolution of surface patterns was visually traced by photogrammetry. Needle ice growth and collapse induced downslope movement and concentrations of stones. A model produced incipient sorted circles on a 5° slope, whereas it resulted in three distinct sorted stripes on a 7° slope. The average diameter or spacing of these forms is 9.7–19.4 cm, comparable to those in the field dominated by diurnal freeze–thaw cycles. Surface parallel displacements of stone markers were traced with motion analysis software. The observed downslope stone displacements agree with those expected assuming that surface soil and stones move by repeated heaving perpendicular to the surface and vertical settlement due to gravity, although the growth of curved needle adds complexity to the overall displacements. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
 A new and detailed bathymetric map of the Myojinsho shallow submarine volcano provides a framework to interpret the physical volcanology of its 1952–1953 eruption, especially how the silicic pyroclasts, both primary and reworked, enlarged the volcano and were dispersed into the surrounding marine environment. Myojinsho, 420 km south of Tokyo along the Izu–Ogasawara arc, was the site of approximately 1000 phreatomagmatic explosions during the 12.5-month eruption. These explosions shattered growing dacite domes, producing dense clasts that immediately sank into the sea; minor amounts of pumice floated on the sea surface after some of these events. The Myojinsho cone has slopes of almost precisely 21° in the depth range 300–700 m.We interpret this to be the result of angle-of-repose deposition of submarine pyroclastic gravity flows that traveled downslope in all directions. Many of these gravity flows resulted from explosions and associated dome collapse, but others were likely triggered by the remobilization of debris temporarily deposited on the summit and steep upper slopes of the cone. Tephra was repeatedly carried into air in subaerial eruption columns and fell into the sea within 1–2 km of the volcano's summit, entering water as deep as 400 m. Because the fall velocity of single particles decreased by a factor of ∼30 in passing from air into the sea, we expect that the upper part of the water column was repeatedly choked with hyperconcentrations of fallout tephra. Gravitational instabilities within these tephra-choked regions could have formed vertical density currents that descended at velocities greater than those of the individual particles they contained. Upon reaching the sea floor, many of these currents probably continued to move downslope along Myojinsho's submarine slopes. Fine tephra was elutriated from the rubbly summit of the volcano by upwelling plumes of heated seawater that persisted for the entire duration of the eruption. Ocean currents carried this tephra to distal areas, where it presumably forms a pyroclastic component of deep-sea sediment. Received: 5 December 1996 / Accepted: 17 September 1997  相似文献   

18.
Experiments have been conducted in straight compound channels with and without one-line emergent vegetation along the floodplain edge, in which stream-wise velocities and boundary shear stresses have been measured. The experimental results show that the velocity distribution in the vegetation case is considerably different from that in the no vegetation case and the boundary shear stress is also significantly reduced by the additional flow resistance caused by the vegetation at a similar relative water depth. The apparent shear stress distribution which has been calculated with the boundary shear stress and weight component in the vegetation case is totally different from that in the no-vegetation case. New formulae for friction factors for the with and without vegetation cases are developed using vegetation density and flow parameters. The drag force caused by the vegetation is obtained for two different vegetation density cases and the magnitude of its effect on total flow resistance is then investigated. The force balance method is used to predict discharge and this is compared with the discharge predicted by the new formula. A further analysis of the selection of vegetation spacing is carried out, determining its effect on stage-discharge.  相似文献   

19.
A turbidity current is a turbulent, particle-laden gravity current that is driven by density differences resulting from the presence of suspended sediment particles. The current travels downslope, bearing a large amount of sediment over a great distance, and forms fluvial and submarine bedforms. Knowledge of the spatio-temporal deposition profile of turbidity-deposited sediment is important for a better understanding of sediment transport by turbidity currents. In the current study, the depositi...  相似文献   

20.
有限长圆柱体磁异常场全空间正演方法   总被引:2,自引:0,他引:2       下载免费PDF全文
在经典位场理论中,许多简单形体位场异常难以通过积分得到全空间的解析式.圆柱体是一类很重要的理论模型体,常用于模拟圆柱状地质体或非地质体(如管线),但目前还不能用解析公式正演有限长圆柱体在三维空间里的磁异常,而多是采用近似简化为有限长磁偶极子或线模型代替.对于有限长圆柱体,特别是半径相对于上顶埋深较大时,这种近似的误差不可忽略.本文利用共轭复数变量替换法,推导出有限长圆柱体在全空间的引力位一阶、二阶导数,利用Poisson关系得到磁异常正演公式,进而利用有限长圆柱体磁异常正演公式求解管状体的磁异常,得到不同磁化方向、不同大小的管线产生的磁场的特征,并将其推广到截面为椭圆的情况.最后通过模拟计算定量给出了将圆柱体近似为线模型的条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号