首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We extend the particle-tracking method to simulate general multi-rate mass transfer (MRMT) equations. Previous methods for single-rate equations used two-state Markov chains and found that the time a particle spends in the mobile state between waiting time epochs is random and exponentially distributed. Using Bochner’s subordination technique for Markov processes, we find that the random mobile times are still exponential for the stochastic process that corresponds to the MRMT equations. The random times in the immobile phase have a distribution that is directly related to the memory function of the MRMT equation. This connection allows us to interpret the MRMT memory function as the rate at which particles of a certain age, measured by residence time in the immobile zone, exit to become mobile once again. Because the exact distributions of mobile and immobile times are known from the MRMT equations, they can be simulated very simply and efficiently using random walks.  相似文献   

3.
This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile–immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection–dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer tests.  相似文献   

4.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Zhang Y  Benson DA  Baeumer B 《Ground water》2007,45(4):473-484
The late tail of the breakthrough curve (BTC) of a conservative tracer in a regional-scale alluvial system is explored using Monte Carlo simulations. The ensemble numerical BTC, for an instantaneous point source injected into the mobile domain, has a heavy late tail transforming from power law to exponential due to a maximum thickness of clayey material. Haggerty et al.'s (2000) multiple-rate mass transfer (MRMT) method is used to predict the numerical late-time BTCs for solutes in the mobile phase. We use a simple analysis of the thicknesses of fine-grained units noted in boring logs to construct the memory function that describes the slow decline of concentrations at very late time. The good fit between the predictions and the numerical results indicates that the late-time BTC can be approximated by a summation of a small number of exponential functions, and its shape depends primarily on the thicknesses and the associated volume fractions of immobile water in "blocks" of fine-grained material. The prediction of the late-time BTC using the MRMT method relies on an estimate of the average advective residence time, t(ad). The predictions are not sensitive to estimation errors in t(ad), which can be approximated by L/v , where v is the arithmetic mean ground water velocity and L is the transport distance. This is the first example of deriving an analytical MRMT model from measured hydrofacies properties to predict the late-time BTC. The parsimonious model directly and quantitatively relates the observable subsurface heterogeneity to nonlocal transport parameters.  相似文献   

6.
More theoretical analysis is needed to investigate why a dual‐domain model often works better than the classical advection‐dispersion (AD) model in reproducing observed breakthrough curves for relatively homogeneous porous media, which do not contain distinct dual domains. Pore‐scale numerical experiments presented here reveal that hydrodynamics create preferential flow paths that occupy a small part of the domain but where most of the flow takes place. This creates a flow‐dependent configuration, where the total domain consists of a mobile and an immobile domain. Mass transfer limitations may result in nonequilibrium, or significant differences in concentration, between the apparent mobile and immobile zones. When the advection timescale is smaller than the diffusion timescale, the dual‐domain mass transfer (DDMT) model better captures the tailing in the breakthrough curve. Moreover, the model parameters (mobile porosity, mean solute velocity, dispersivity, and mass transfer coefficient) demonstrate nonlinear dependency on mean fluid velocity. The studied case also shows that when the Peclet number, Pe, is large enough, the mobile porosity approaches a constant, and the mass transfer coefficient can be approximated as proportional to mean fluid velocity. Based on detailed analysis at the pore scale, this paper provides a physical explanation why these model parameters vary in certain ways with Pe. In addition, to improve prediction in practical applications, we recommend conducting experiments for parameterization of the DDMT model at a velocity close to that of the relevant field sites, or over a range of velocities that may allow a better parameterization.  相似文献   

7.
For many scientific and practical tasks, it is important to estimate the soil–water percolation fluxes. This paper builds on measurements with large horizontal time‐domain reflectometry water content sensors in a loamy Mollisol. The sensors were installed into pre‐drilled holes and the gaps between them, and the soil was filled with a slurry of local soil with water. This gave rise to envelopes around them that contained artificial macropores. The sensors reacted to intensive rains by a rapid increase of their readings, often above the native soil's porosity, followed by an almost equally rapid decrease. The paper explores the feasibility of quantifying the rapid percolation, based on these anomalous water content peaks, and demonstrates that this is possible in principle, if the processes are simulated by a suitable model. A two‐dimensional dual porosity non‐equilibrium (mobile‐immobile) model was tried. The envelope around the sensor was modelled as an annulus with higher porosity and hydraulic conductivity, which attracts preferential flow and amplifies the percolation signal. With the model at hand, the flux hydrographs can be derived from model simulations and measured precipitation. For contrast, the Durner equilibrium dual porosity model was tried but was found little suitable. However, even the mobile‐immobile model did not perform perfectly. Simulated water contents were similar to the measured ones at some depths but not in the others, and the percolation fluxes were overestimated, compared to cumulative soil–water balance. Efforts to improve model performance were not successful. Hence, the model structure needs to be improved. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper develops mass fraction models for transport and fate of agricultural pollutants in structured two-region soils. Mass fraction index models, based on a semi-infinite domain solution, are derived that describe leaching at depth, vapor losses through soil surface, absorption, and degradation in the dynamic- and stagnant-water soil regions. The models predict that leaching is the result of the combined effect of the upward vapor-phase transport relative to downward advection, residence time relative to half-life, dispersion, and lateral diffusive mass transfer. Simulations show that leached fraction of volatile compounds does not always decrease monotonically with increased residence time relative to the pollutant half-life, as a result of complex interactions among the different physical and biochemical processes. The results show that leaching, volatilization, and degradation losses can be affected significantly by lateral diffusive mass transfer into immobile-water regions and advection relative to dispersion (i.e. Peclet number) in the mobile-water regions. It is shown that solute diffusion into the immobile phase and subsequent biochemical decay reduces leaching and vapor losses through soil surface. Potential use of the modified leaching index for the screening of selected pesticides is illustrated for different soil textures and infiltration rates. The analysis may be useful to the management of pesticides and the design of landfills.  相似文献   

9.
Changes in the water table level result in variable water saturation and variable hydrological fluxes at the interface between the unsaturated and saturated zone. This may influence the transport and fate of contaminants in the subsurface. The objective of this study was to examine the impact of a decreasing and an increasing water table on solute transport. We conducted tracer experiments at downward flow conditions in laboratory columns filled with two different uniform porous media under static and transient flow conditions either increasing or decreasing the water table. Tracer breakthrough curves were simulated using a mobile–immobile transport model. The resulting transport parameters were compared to identify dominant transport processes. Changes in the water table level affected dispersivities and mobile water fractions depending on the direction of water table movement and the grain size of the porous media. In fine glass beads, the water flow velocity was similar to the decline rate of the water table, and the mobile water fraction was decreased compared with steady‐state saturated conditions. However, immobile water was negligible. In coarse glass beads, water flow was faster because of fingered flow in the unsaturated part, and the mobile water fraction was smaller than in the fine material. Here, a rising water table led to an even smaller mobile water fraction and increased solute spreading because of diffusive interaction with immobile water. We conclude that changes of the water table need to be considered to correctly simulate transport in the subsurface at the transition of the unsaturated–saturated zone. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Quantifying hyporheic solute dynamics has been limited by our ability to assess the magnitude and extent of stream interactions with multiple domains: mobile subsurface storage (MSS, e.g., freely flowing pore water) and immobile subsurface storage (ISS, e.g., poorly connected pore water). Stream-tracer experiments coupled with solute transport modeling are frequently used to characterize lumped MSS and ISS dynamics, but are limited by the ability to sample only “mobile” water and by window of detection issues. Here, we couple simulations of near-surface electrical resistivity (ER) methods with conservative solute transport to directly compare solute transport with ER interpretations, and to determine the ability of ER to predict spatial and temporal trends of solute distribution and transport in stream–hyporheic systems. Results show that temporal moments from both ER and solute transport data are well correlated for locations where advection is not the dominant solute transport process. Mean arrival time and variance are especially well-predicted by ER interpretation, providing the potential to estimate rate-limited mass transport (i.e. diffusive) parameters from these data in a distributed domain, substantially increasing our knowledge of the fate and transport of subsurface solutes.  相似文献   

11.
A numerical solution that is significantly more general than other semi-analytical solutions is presented for governing equations describing advective–dispersive transport with multirate mass transfer between mobile and immobile domains. The new solution approach is general in the sense that it does not impose any restrictive assumption on the spatial or temporal variability of advective and dispersive processes in the mobile domain. A single integro-differential equation (IDE) is developed for the concentration in the mobile domain by separating the concentration in the immobile domain from the set of two partial differential equations. The solution to the IDE requires the evaluation of a temporal integral of the concentration in the mobile domain, which is a function of the Laplace transform of the distribution of the mass transfer rate coefficient. The Laplace transform is not limited to flow fields with known constant velocities. The solutions for one- and two-dimensional examples obtained using the new approach agree with those obtained by existing semi-analytical and numerical approaches.  相似文献   

12.
Pressure to decrease reliance on surface water storage has led to increased interest in aquifer storage and recovery (ASR) systems. Recovery efficiency, which is the ratio of the volume of recovered water that meets a predefined standard to total volume of injected fluid, is a common criterion of ASR viability. Recovery efficiency can be degraded by a number of physical and geochemical processes, including rate-limited mass transfer (RLMT), which describes the exchange of solutes between mobile and immobile pore fluids. RLMT may control transport behavior that cannot be explained by advection and dispersion. We present data from a pilot-scale ASR study in Charleston, South Carolina, and develop a three-dimensional finite-difference model to evaluate the impact of RLMT processes on ASR efficiency. The modeling shows that RLMT can explain a rebound in salinity during fresh water storage in a brackish aquifer. Multicycle model results show low efficiencies over one to three ASR cycles due to RLMT degrading water quality during storage; efficiencies can evolve and improve markedly, however, over multiple cycles, even exceeding efficiencies generated by advection-dispersion only models. For an idealized ASR model where RLMT is active, our simulations show a discrete range of diffusive length scales over which the viability of ASR schemes in brackish aquifers would be hindered.  相似文献   

13.
We investigate the importance of selecting two different methodologies for the determination of hydraulic conductivity from available grain-size distributions on the stochastic modeling of the depth-averaged breakthrough curve observed during a forced-gradient tracer test experiment. The latter was performed in the Lauswiesen alluvial aquifer, located near the city of Tübingen, Germany, by injecting NaBr into a well at a distance of about 50 m from a pumping well. We also examine the joint effect of the choice of the transport model adopted to describe solute transport at the site and the way the spatial distribution of porosity is assessed. In the absence of direct measurements of porosity, we consider: (a) the model used by Riva et al. (J Contam Hydrol 88:92–118, 2006; J Contam Hydrol 101:1–13, 2008), which relates the natural logarithms of effective porosity and conductivity through an empirical, experimentally-based, linear relationship derived for a nearby experimental site; and (b) a model based on a commonly used relationship linking the total porosity to the coefficient of uniformity of grain size distributions. Transport is described in terms of a purely advective process and/or by including mass exchange processes between mobile and immobile regions. Modeling of flow and transport is performed within a Monte Carlo framework, upon conceptualizing the aquifer as a random composite medium. Our results indicate that the model adopted to describe the correlation between conductivity and porosity and the way grain-sieve information are incorporated to depict the heterogeneous distribution of hydraulic conductivity can have relevant effects in the interpretation of the data at the site. All the conceptual models employed to describe the structural heterogeneity of the system and transport features can reasonably reproduce the global characteristics of the experimental depth-averaged breakthrough curve. Specific details, such as the peak concentration and the time of first arrival, can be better reproduced by a double porosity transport model when a correlation between conductivity and porosity based on grain size information at the site is considered. The best prediction of the late-time behavior of the measured breakthrough curves, in terms of the observed heavy tailing, is offered by directly linking porosity distribution to the spatial variability of particle size information.  相似文献   

14.
We use particle tracking to determine contributing areas (CAs) to wells for transient flow models that simulate cyclic domestic pumping and extreme recharge events in a small synthetic watershed underlain by dipping sedimentary rocks. The CAs consist of strike-oriented bands at locations where the water table intersects high-hydraulic conductivity beds, and from which groundwater flows to the pumping well. Factors that affect the size and location of the CAs include topographic flow directions, rock dip direction, cross-bed fracture density, and position of the well relative to streams. For an effective fracture porosity (ne) of 10−4, the fastest advective travel times from CAs to wells are only a few hours. These results indicate that wells in this type of geologic setting can be highly vulnerable to contaminants or pathogens flushed into the subsurface during extreme recharge events. Increasing ne to 10−3 results in modestly smaller CAs and delayed well vulnerability due to slower travel times. CAs determined for steady-state models of the same setting, but with long-term average recharge and pumping rates, are smaller than CAs in the models with extreme recharge. Also, the earliest-arriving particles arrive at the wells later in the steady-state models than in the extreme-recharge models. The results highlight the importance of characterizing geologic structure, simulating plausible effective porosities, and simulating pumping and recharge transience when determining CAs in fractured rock aquifers to assess well vulnerability under extreme precipitation events.  相似文献   

15.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   

16.
Attenuation data extracted from full waveform sonic logs is sensitive to vuggy and matrix porosities in a carbonate aquifer. This is consistent with the synthetic attenuation (1 / Q) as a function of depth at the borehole-sonic source-peak frequency of 10 kHz. We use velocity and densities versus porosity relationships based on core and well log data to determine the matrix, secondary, and effective bulk moduli. The attenuation model requires the bulk modulus of the primary and secondary porosities. We use a double porosity model that allows us to investigate attenuation at the mesoscopic scale. Thus, the secondary and primary porosities in the aquifer should respond with different changes in fluid pressure. The results show a high permeability region with a Q that varies from 25 to 50 and correlates with the stiffer part of the carbonate formation. This pore structure permits water to flow between the interconnected vugs and the matrix. In this region the double porosity model predicts a decrease in the attenuation at lower frequencies that is associated with fluid flowing from the more compliant high-pressure regions (interconnected vug space) to the relatively stiff, low-pressure regions (matrix). The chalky limestone with a low Q of 17 is formed by a muddy porous matrix with soft pores. This low permeability region correlates with the low matrix bulk modulus. A low Q of 18 characterizes the soft sandy carbonate rock above the vuggy carbonate.This paper demonstrates the use of attenuation logs for discriminating between lithology and provides information on the pore structure when integrated with cores and other well logs. In addition, the paper demonstrates the practical application of a new double porosity model to interpret the attenuation at sonic frequencies by achieving a good match between measured and modeled attenuation.  相似文献   

17.
Flach GP  Crisman SA  Molz FJ 《Ground water》2004,42(6-7):815-828
Subgrid modeling of some type is typically used to account for heterogeneity at scales below the grid scale. The single-domain model (SDM), employing field-scale dispersion, and the dual-domain model (DDM), employing local hydrodynamic dispersion and exchange between domains having large hydraulic conductivity contrasts, are well-known examples. In this paper, the two modeling approaches are applied to tritium migration from the H-area seepage basins to a nearby stream--Fourmile Branch--at the Savannah River Site. This location has been monitored since 1955, so an extensive dataset exists for formulating realistic simulations and comparing the results to data. It is concluded that the main parameters of both models are scale-dependent, and methods are discussed for making initial estimates of the DDM parameters, which include mobile/immobile porosities and the mass exchange coefficient. Both models were calibrated to produce the best fit to recorded tritium data. When various attributes of the dataset were considered, including cumulative tritium activity discharged to Fourmile Branch, plume arrival time, and plume attenuation due to closure of the seepage basins in 1988, the DDM produced results superior to the SDM, while causing no unrealistic upgradient dispersion. A sensitivity analysis showed that only the DDM was able to accurately produce both the instantaneous activity discharge and cumulative activity with a single parameter set. This is thought to be due to the advection-dominated nature of transport in natural porous media and the more realistic treatment of this type of transport in the DDM relative to the SDM.  相似文献   

18.
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets.  相似文献   

19.
The geochemical computer model PHREEQC can simulate solute transport in fractured bedrock aquifers that can be conceptualized as dual-porosity flow systems subject to one-dimensional advective-dispersive transport in the bedrock fractures and diffusive transport in the bedrock matrix. This article demonstrates how the physical characteristics of such flow systems can be parameterized for use in PHREEQC, it provides a method for minimizing numerical dispersion in PHREEQC simulations, and it compares PHREEQC simulations with results of an analytical solution. The simulations assumed a dual-porosity conceptual model involving advective-reactive-dispersive transport in the mobile zone (bedrock fracture) and diffusive-reactive transport in the immobile zone (bedrock matrix). The results from the PHREEQC dual-porosity transport model that uses a finite-difference approach showed excellent agreement compared with an analytical solution.  相似文献   

20.
Flow and transport simulation in karst aquifers remains a significant challenge for the ground water modeling community. Darcy's law–based models cannot simulate the inertial flows characteristic of many karst aquifers. Eddies in these flows can strongly affect solute transport. The simple two-region conduit/matrix paradigm is inadequate for many purposes because it considers only a capacitance rather than a physical domain. Relatively new lattice Boltzmann methods (LBMs) are capable of solving inertial flows and associated solute transport in geometrically complex domains involving karst conduits and heterogeneous matrix rock. LBMs for flow and transport in heterogeneous porous media, which are needed to make the models applicable to large-scale problems, are still under development. Here we explore aspects of these future LBMs, present simple examples illustrating some of the processes that can be simulated, and compare the results with available analytical solutions. Simulations are contrived to mimic simple capacitance-based two-region models involving conduit (mobile) and matrix (immobile) regions and are compared against the analytical solution. There is a high correlation between LBM simulations and the analytical solution for two different mobile region fractions. In more realistic conduit/matrix simulation, the breakthrough curve showed classic features and the two-region model fit slightly better than the advection-dispersion equation (ADE). An LBM-based anisotropic dispersion solver is applied to simulate breakthrough curves from a heterogeneous porous medium, which fit the ADE solution. Finally, breakthrough from a karst-like system consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared with the advection-dispersion and two-region analytical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号