首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
热带印度洋和太平洋海气相互作用事件的协调发展   总被引:6,自引:0,他引:6  
对次表层海温距平的分布和变化的分析表明,在热带印度洋和太平洋都存在海温距平的偶极子模态,即在赤道附近大洋东、西两个部分的海温距平在不少年份呈反符号分布。进一步分析表明,两大洋海温距平的偶极子模态间有密切的联系。在分析它们和850hPa纬向风距平后指出,正是Walker环流异常把两大洋的海温距平变化联系起来。  相似文献   

2.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   

3.
北太平洋副极地海区作为全球海洋三个高营养盐低叶绿素(high nutrient and low chlorophyll, HNLC)海区之一, 其浮游植物生长受到微量元素铁的限制。对于开阔大洋, 大气沉降是海洋表层铁的一个重要来源, 铁元素沉降进入海洋后能够促进浮游植物生长, 进而引起海洋初级生产力和生物泵的响应。本文利用SPRINTARS(Spectral Radiation-Transport Model for Aerosol Species)模式的时长为20a的日均大气沉降数据, 对北太平洋海区大气沉降的时空特征进行了分析。结果表明, 进入北太平洋海区的大气沉降量为26.81Tg·a-1, 并且存在显著的季节变化: 春季最高, 冬季最低, 5月份进入海洋的沉降量达到峰值。大气沉降主要来源于陆地区域, 在风场的驱动下向海洋传输, 因此大气沉降量的空间分布呈现出西高东低的特征。本文以2010年8月中旬卫星观测到的一次强沙尘(即高大气沉降量)事件为例, 研究了大气沙尘的传播路径。进一步结合2001年4月9—12日及2008年4月20—22日的沙尘事件, 分析了西北太平洋K2站位(47°N, 160°E)附近海域海洋初级生产力对大气沉降——沙尘事件的响应。结果表明, 三次沙尘事件后, K2站位的颗粒有机碳通量、叶绿素浓度均有明显增加, 即沙尘事件对北太平洋副极区海洋初级生产力存在促进作用。  相似文献   

4.
对海洋中起伏运动(heaving)信号的时空分布研究能够帮助我们更好地了解气候系统中的年际和年代际变率。文章通过再分析资料和模式对太平洋区域的heaving主要模态进行了研究。研究结果表明: 太平洋区域主要存在两种heaving模态: 第一模态主要表现为赤道东西两侧的温跃层异常信号反位相; 第二模态表现为赤道区域和副热带区域的温跃层异常信号呈现反位相变化的规律。本文对这两个主要heaving模态所涉及的物理过程进行详细讨论, 结果表明: 东西反位相模态主要是受赤道波动调节的结果; 而经向结构模态则主要是由赤道地区的波动和副热带区域的风应力旋度异常作用共同导致。此外, 我们还讨论了heaving模态可以通过海洋波动以及Ekman输送等过程对海盆尺度的热输送(振幅约为5×1014W)以及海洋热含量(振幅约为1.5×1020J)的再分配起到了关键的调制作用, 进一步表明heaving模态对全球气候变化有着重要的作用。  相似文献   

5.
热带印度洋上层水温的年循环特征   总被引:1,自引:0,他引:1  
通过分析多年气候月平均的Levitus水温资料,结合多年气候月平均海表面风场资料以及观测的热带印度洋上层海流的分布状况,探讨热带印度洋上层水温的时空分布特征,剖析了热带印度洋混合层深度及印度洋暖水的季节变化规律。分析表明:热带印度洋的海表面温度低值区始终位于大洋的南部,而高值区呈现明显的季节变化,冬季位于赤道附近,在夏季则处于大洋的东北部;在热带印度洋的中西部、赤道偏南海域的次表层终年存在一冷心结构;热带印度洋表面风场的季节变化是影响该海域混合层深度季节性变化的主要因素;印度洋暖水在冬、春季范围较大,与西太平洋暖池相连,而在夏、秋季范围较小,并与西太平洋暖池分开。  相似文献   

6.
太平洋年代际变化研究进展浅析   总被引:1,自引:3,他引:1  
综述了近几年太平洋年代际变化形成机制或起因的7种代表性观点,对已有观点作了初步评述,并提出未来太平洋年代际变化研究应关注以下方面:太平洋年代际变化的多重模态及相应的多重机制,不同时空尺度海洋现象间的相互作用,南太平洋年代际变化及在全太平洋年代际变化中的作用,ENSO与PDO的预测,海洋环流的年代际变化及其对气候变化的作用,海洋热能、机械能的收支及转换等关键问题.  相似文献   

7.
用59年Ishii再分析温度资料,讨论了热带西南印度洋(SWTIO)上升流区的季节和年际变化以及与上升流区有关的温度距平的变化,同时分析了其与热带印太海气系统的关系,结果显示SWTIO 上升流在南半球冬、夏季比较强,春季最弱。它的范围在5°~1°S,在东西向从50°E可以伸展到90°E。该上升流区的变化与温跃层的温度距平有密切的关系,并存在明显的5 a振荡周期。SWTIO上升流区温度距平的5 a周期振荡是由热带东印度洋温度距平在最大垂直温度距平曲面(MTAL)上向西沿着11.5°~6.5°S传播过来的,它与热带太平洋的温度距平传播方式不同。SWTIO上升流是热带印太海气系统的一个重要组成部分,印度洋偶极子 超前SWTIO上升流区温度变化5个月,最大相关系数达到0.57,NINO3区指数超前SWTIO上升流区指数2个月达到0.49。当热带印太区域的大气风场改变,影响热带太平洋和印度洋表层SSTA,出现ENSO和DIPOLE,进一步向西传播到SWTIO次表层,导致SWTIO上升流区出现改变。  相似文献   

8.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

9.
Argo is an international project that is deploying profiling drifters in all of the oceans of the world, with the exception of the Arctic Ocean. Though still in its implementation phase the Argo array is now supplying an impressive amount of data which offers new opportunities to assess and monitor the environmental status of many regions of the world oceans. Recently, changes in the Gulf of Alaska have been documented by other means that suggest large changes in the T/S relationships and related changes in nutrient supply and productivity. This paper examines these unusual changes to demonstrate the use of the Argo database to determine the physical status of an ecosystem. While the methods of analysis are general, they are here specifically applied to the N.E. Pacific Ocean. We show how it is possible to monitor the baroclinic geostrophic circulation fields in near real-time and correlate these changes with alterations in the stratification of the upper water column.  相似文献   

10.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

11.
从地球气候系统的角度,回顾了国内外热带太平洋、大西洋和印度洋海洋-大气相互作用研究,特别是有关这三大洋海-气耦合主模态研究已取得的成就;提出了热带印度洋、大西洋在被热带太平洋“充电”的同时,如何通过大气桥“放电”,从而改变热带太平洋海洋动力过程是目前面临的重要科学问题.指出了海洋动力过程在三大洋相互作用中的重要性.  相似文献   

12.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, -layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO.The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open − closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing.At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling regions in the eastern ocean; indeed, depending on the strength and parameterization of vertical diffusion in the Pacific interior, the draining can be strong enough that layer 3 water flows from the Indian to Pacific Ocean. The IT in COCO lacks a significant deep core, likely because the model’s coarse bottom topography has no throughflow passage below 1000 m. Consistent with observations, water in the near-surface (deep) core comes mostly from the northern (southern) hemisphere, a consequence of the wind-driven circulation in the tropical North Pacific being mostly confined to the upper ocean; as a result, it causes the near-surface current along the New Guinea coast to retroflect eastward, but has little impact on the deeper New Guinea undercurrent.In the South Pacific, the IT-associated flow into the basin is spread roughly uniformly throughout all four layers, a consequence of downwelling processes in the Indian Ocean. The inflow first circulates around the Subtropical Gyre, and then bends northward at the Australian coast to flow to the equator within the western boundary currents. To allow for this additional, northward transport, the bifurcation latitude of the South Equatorial Current shifts southward when the Indonesian passages are open. The shift is greater at depth (layers 3 and 4), changing from about 14°S when the passages are closed to 19°S when they are open and, hence, accounting for the northward-flowing Great Barrier Reef Undercurrent in that latitude range.After flowing along the New Guinea coast, most waters in layers 1-3 bend offshore to join the North Equatorial Countercurrent, Equatorial Undercurrent, and southern Tsuchiya Jet, respectively, thereby ensuring that northern hemisphere waters contribute significantly to the IT. In contrast, much of the layer 4 water directly exits the basin via the IT, but some also flows into the subpolar North Pacific. Except for the direct layer 4 outflow, all other IT-associated waters circulate about the North Pacific before they finally enter the Indonesian Seas via the Mindanao Current.  相似文献   

14.
中太平洋铁锰结壳铅同位素研究   总被引:5,自引:0,他引:5  
已有研究表明大洋中溶解的铅(Pb)来源于陆源物质,但是,对Pb进入大洋的途径争议很大。为此分析了取自中太平洋两块铁锰结壳样品的Pb同位素组成,获得了整个新生代的中太平洋Pb同位素演化历史。结果表明这两块结壳的Pb同位素随时间的演化曲线与中北太平洋沉积物岩心LL44-GPC3中风成碎屑的Pb同位素演化曲线相似。证实该区深水中的天然溶解铅主要来自风成粉尘,并且50Ma之前中太平洋中溶解Pb同位素组成主要取决于源自美洲的风成粉尘的输入,40Ma之后主要取决于源自亚洲的风成粉尘的输入。  相似文献   

15.
The oceans are in trouble. Poorly understood and unprecedented environmental and economic changes are underway in our world's oceans that will significantly affect life in the sea as well as on land. Only in the last thirty years has the contribution of the ocean sector to the economy been measured. An examination of these studies has exposed definitional, conceptual and methodological differences in measuring marine-related economic activity in the economy, making comparisons difficult. Both the ocean and the coastal economies face a world of volatile changes. In the ocean economy marine transport faces unpredictable fuel costs. Coastal tourism also faces losses from climate change impacts and sea level rise. Finally, a warming ocean and increasing acidification of the oceans from greenhouse gases is already affecting coral reefs and a range of fish stocks. Economic measures are important to predict these impacts, as are economic measures of the resilience of different areas of the ocean and coastal economies. This article demonstrates how knowledge of both the ocean, coastal and national economies can help governments address the future impacts and demands posed by nature and human populations on our coasts and oceans.  相似文献   

16.
印度洋浮游生态系统的特点及其对全球变暖的响应   总被引:1,自引:0,他引:1  
与太平洋和大西洋相比,印度洋有独特的季风和洋流系统和由此驱动的浮游生物分布及生产规律.在全球变暖的背景下,印度洋的变暖趋势比太平洋和大西洋更为显著,是研究变暖对海洋浮游生态系统影响的热点海区之一.文章结合国内外文献,评述印度洋浮游生态系统的现状、特点及对全球变暖的响应,包括印度洋的浮游生物地理分布、南北印度洋浮游生态系...  相似文献   

17.
The Pacific Island Regional Ocean Policy (PIROP), which was released in 2002, provided the framework for ocean governance in the Pacific region. Since then there have been a myriad of policy documents and institutional arrangements that have been developed to address ocean governance issues, however, little progress has occurred with regard to the actual implementation of PIROP. This paper examines the region's progress in establishing integrated oceans management, and how this fits with the use of marine spatial planning and area based management tools, such as marine protected areas. It argues that policy making in this region encounters the usual difficulties with integrated policy approaches experienced elsewhere but that these difficulties are further accentuated when applied to developing nations that are highly dependent on external support. It suggests a way forward for the future with development of action plans, implementation and the practical application of those plans including a regional contextualisation/analysis of progress against regional objectives.  相似文献   

18.
Basin-scale variations in oceanic physical variables are thought to organize patterns of biological response across the Pacific Ocean over decadal time scales. Different physical mechanisms can be responsible for the diverse basin-scale patterns of sea-surface temperature (SST), mixed-layer depth, thermocline depth, and horizontal currents, although they are linked in various ways. In light of various theories and observations, we interpret observed basinwide patterns of decadal-scale variations in upper-ocean temperatures. Evidence so far indicates that large-scale perturbations of the Aleutian Low generate temperature anomalies in the central and eastern North Pacific through the combined action of net surface heat flux, turbulent mixing and Ekman advection. The surface-forced temperature anomalies in the central North Pacific subduct and propagate southwestwards in the ocean thermocline to the subtropics but apparently do not reach the equator. The large-scale Ekman pumping resulting from changes of the Aleutian Low forces western-intensified thermocline depth anomalies that are approximately consistent with Sverdrup theory. These thermocline changes are associated with SST anomalies in the Kuroshio/Oyashio Extension that are of the same sign as those in the central North Pacific, but lagged by several years. The physics of the possible feedback from the SST anomalies to the Aleutian Low, which might close a coupled ocean–atmosphere mode of decadal variability, is poorly understood and is an area of active research. The possible responses of North Pacific Ocean ecosystems to these complicated physical patterns is summarized.  相似文献   

19.
Projections of ocean climate for northwestern Pacific Ocean   总被引:1,自引:1,他引:0  
The long-term adjustment processes of atmosphere and ocean in response to gradually increased atmospheric CO2 concentration have been analyzed in 70 and 140a integrations with NCAR fully-coupled climate system model (CSM). In these experiments the CO2 concentration has been increased to double and quadruples the initial concentration, respectively. After 70a, at the time of CO2 doubling, the model predicts surface air temperature rises by 1.2 and 1.5K for the globe and the northwestern Pacific Ocean, respectively. The behavior of the quadrupling run is similar: each global and regional mean surface air temperatures increase by 2.8 and 3.0K at the time of CO2 quadrupling. From the experiments, surface air temperature changes in the northwestern Pacific Ocean will be more distinctive compared with the global average, mainly due to exceptionally large warming and sea level change near the entrance of the Kuroshio extension.  相似文献   

20.
李乃胜 《海洋科学》1996,20(3):3-14
国际大洋钻探计划自1983年以来,已成功地实施了66个航次的深海钻探作业,获取钻探岩芯逾100000m。在关于大陆边缘的构造演化,海洋地壳的形成与发展,地壳流体循环和壳幔相互作用海洋沉积结构和古海洋学,地球大气圈、水圈、冰圈、生物圈的长期变化等众多研究领域取得了一系列重大科研成果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号