共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions. 相似文献
2.
3.
A Diagnostic Study of Explosive Development of Extratropical Cyclone over East Asia and West Pacific Ocean 总被引:9,自引:0,他引:9
ADiagnosticStudyofExplosiveDevelopmentofExtratropicalCycloneoverEastAsiaandWestPacificOcean¥JiaYiqin(贾逸勤)andZhaoSixiong(赵思雄)(... 相似文献
4.
A climatology of extratropical cyclones (ECs) over East Asia (20 -75 N, 60 -160 E) is analyzed by applying an improved objective detection and tracking algorithm to the 4-time daily sea level pressure fields from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data. A total of 12914 EC processes for the period of 1958-2001 are identified, with an EC database integrated and EC activities reanalyzed using the objective algorithm. The results reveal that there are three major cyclogenesis regions: West Siberian Plain, Mongolia (to the south of Lake Baikal), and the coastal region of East China; whereas significant cyclolysis regions are observed in Siberia north of 60 N, Northeast China, and Okhotsk Sea-Northwest Pacific. It is found that the EC lifetime is largely 1-7 days while winter ECs have the shortest lifespan. The ECs are the weakest in summer among the four seasons. Strong ECs often appear in West Siberia, Northeast China, and Okhotsk Sea-Northwest Pacific. Statistical analysis based on k-means clustering has identified 6 dominating trajectories in the area south of 55 N and east of 80 E, among which 4 tracks have important impacts on weather/climate in China. ECs occurring in spring (summer) tend to travel the longest (shortest). They move the fastest in winter, and the slowest in summer. In winter, cyclones move fast in Northeast China, some areas of the Yangtze-Huaihe River region, and the south of Japan, with speed greater than 15 m s 1 . Explosively-deepening cyclones are found to occur frequently along the east coast of China, Japan, and Northwest Pacific, but very few storms occur over the inland area. Bombs prefer to occur in winter, spring, and autumn. Their annual number and intensity in 1990 and 1992 in East Asia (EA) are smaller and weaker than their counterparts in North America. 相似文献
5.
The lower limit on the drag coefficient under hurricane force winds is determined by the break-up of the air–sea interface
due to Kelvin–Helmholtz instability and formation of the two-phase transition layer consisting of sea spray and air bubbles.
As a consequence, a regime of marginal stability develops. In this regime, the air–sea drag coefficient is determined by the
turbulence characteristics of the two-phase transition layer. The upper limit on the drag coefficient is determined by the
Charnock-type wave resistance. Most of the observational estimates of the drag coefficient obtained in hurricane conditions
and in laboratory experiments appear to lie between the two extreme regimes: wave resistance and marginal stability. 相似文献
6.
D. Bala Subrahamanyam Radhika Ramachandran S. Indira Rani P. K. Kunhikrishnan B. Prasad Kumar 《Boundary-Layer Meteorology》2008,127(2):333-344
Surface-layer meteorological observations obtained from oceanic buoys over the Korean Strait and the Yellow Sea are used to
estimate surface-layer turbulent fluxes of heat, moisture and momentum over the East-Asian Marginal Seas. Special emphasis
is paid towards explanation of the impact of the Tsushima warm current flowing through the Korean Strait on air–sea interface
fluxes. During the active phase of the Tsushima warm current, when the difference in sea surface temperature and air temperature
becomes as large as 8°C, the sensible heat flux increases to a value of about 135 W m−2, while the latent heat flux is around 200 W m−2. The study attempts to broaden our understanding on the air-sea interaction processes over the Yellow Sea and Korean Strait. 相似文献
7.
Variability of Summer Atmospheric Moisture Flux and Its Effect on Precipitation over East China 下载免费PDF全文
1. IntroductionIt is known that droughts and floods result fromthe balance of water. Atmospheric water vapor notonly provides resources of water, but plays an impor-tant role in the water and heat cycle of climate sys-tem. IPCC (2001) pointed out that water cycle has anotable change on the background of climate change.Gutzler (1996) found that specific humidity at levelsof 1000, 700, and 300 hPa increases 3%-9% per decadeby using four sounding data in the western equato-rial Pacific. Howeve… 相似文献
8.
The formation of cyclones over the sea surface is driven by air-sea interaction with feedbacks on wave generation, thermohaline structures, and biochemical properties of upper-ocean layers. In the Mediterranean basin, strong cyclonic systems having tropical-like characteristics are called “medicanes”. The consequences of such events are usually assessed over the land, however, hydrographic effects are particularly difficult to be quantified mostly due to the rarity of oceanographic in-situ monitoring systems. In this study, the hydrographic effects of a high-impact medicane, crossing the central-eastern Mediterranean in late September 2018 are investigated mainly based on Argo float measurements. We traced its hydrographic fingerprint and examined its effects on the upper-layer physical properties by analyzing temperature and salinity profiles from floats that overlapped with its track. Float data is supported by satellite sea surface temperature reanalysis data and meteorological records. The synergistic effects of intense evaporation and vertical mixing mechanisms triggered by the medicane, resulted in abrupt surface cooling, especially in the Ionian and Aegean Seas. A relatively homogenous decrease of temperature in the upper 50-m-depth layer followed, along with the deepening of the mixed-layer depth, corresponding to an estimated per profile average deficit of (-2.72 ± 1.23) x 108 J m−2 in the ocean heat content. Simultaneously, significant upper-layer freshening occurred because of vertical mixing and heavy rainfall. However, a salinity increase in the subsurface waters was observed after the medicane event, which is associated with both horizontal advection and vertical mixing which followed the weakening of the Atlantic Water signal and the dominance of the Levantine Surface Water in this zone. Our findings highlight strong, short-scale hydrographic alterations made available due to the expansion of the marginal seas operational oceanographic network. 相似文献
9.
For the 1988?C2006 cold seasons, we investigated the characteristic structures of two types of cold-air outbreaks over the East China Sea: Type N, for which a thick layer of northerly meridional wind was formed during the cold-air outbreak; and Type S, for which an initially thin layer of northerly meridional wind was gradually thickened as the cold-air outbreak developed. The emergence frequencies of Type N and Type S outbreaks are sensitive to winter monsoon intensity at the 500-hectopascal (hPa) level. Type S outbreaks are dominant during strong El Ni?o events, leading to enhanced southerly meridional flow at 500?hPa over the East China Sea. The development of the 500-hPa Pacific High strongly influences the synoptic-scale structures of the two different types of outbreaks over the East China Sea. 相似文献
10.
By examining the second leading mode(EOF2)of the summer rainfall in China during 1958–2001 and associated circulations,the authors found that this prominent mode was a dipole pattern with rainfall decreasing to the north of the Yangtze River and increasing to the south.This reverse relationship of the rainfalls to the north and to the south of the Yangtze River was related with the meridional circulations within East Asia and the neighboring region,excited by SST in the South China Sea-northwestern Pacific.... 相似文献
11.
Based on a coupled physical-biogeochemical model of the Yellow and East China Seas (YECS), the influence of biological activity on the seasonal variation of the air–sea CO2 flux is evaluated. The solution of a sensitivity experiment that excludes biological activity is compared with that of a reference experiment that includes the full processes. The comparison reveals that biological activity results in a much stronger seasonal variation of surface dissolved inorganic carbon (DIC) and, hence, the ratio of total alkalinity to DIC in the northern parts of the YECS. The increased ratio resulting from biological DIC consumption contributes to the undersaturated partial pressure of CO2 at the sea surface with respect to the atmosphere, causing the central Yellow Sea in summer and autumn to shift from being a CO2 source to a sink; this same shift also occurs over the Changjiang Bank in summer. In the southern YECS, the biological effect is relatively weak. The comparison further reveals that low water temperature, instead of biological activity, is the dominant factor causing the YECS to become a carbon sink in spring. The biological effect on the variation of DIC (both at the surface and in the water column) differs greatly among the three representative regions of the YECS because of differences in primary production and hydrodynamic conditions. Particle-tracking simulations quantify the regional difference in horizontal advection. In the northern region, weaker horizontal advection causes the longer residence time of low DIC water induced by biological consumption. Over the entire YECS, biological activity contributes to about one-third of the total annual absorption of atmospheric CO2. 相似文献
12.
An evolution of the anomalous tropical storm is considered developed on April 29–May 4, 2008 over the Bay of Bengal. After the origination, it spread eastward through the Andaman Sea and reached the Myanmar coast. The analysis of formation and development of the tropical storm over the water area of the Bay of Bengal demonstrated that the sea level pressure at the center of this storm was rather high. Nevertheless, catastrophically large precipitation amount fell in Myanmar. 相似文献
13.
Hai Xia Shan 《大气与海洋》2017,55(4-5):230-246
To study the interaction between sea surface temperature (SST) and surface wind in the East China Sea (ECS), the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modelling system is used to downscale a global atmospheric reanalysis product over the study area in 2013. A singular value decomposition (SVD) method is applied to SST and surface wind speed to study their coupling relationship in the ECS. The heterogeneous correlation map indicates that the surface wind has a negative correlation with the SST, especially in the Kuroshio Current. From lead-lag correlations between the first principal component of SST and surface wind SVD (filtered using a Lanczos high-pass filter with a 90-day cut-off), a correlation of about 0.1 is found at lag ?6, and a negative correlation of about ?0.3 is also found around lag 1. The results indicate a negative feedback between SST and wind fluctuations at short time-scales. Air–sea heat ?uxes contribute little to the SST variability in the ECS section of the Kuroshio and the analysis of the mixed-layer heat budget shows that the contribution of horizontal advection is dominant in determining the intraseasonal SST signals. 相似文献
14.
T. A. Shatilina G. Sh. Tsitsiashvili T. V. Radchenkova 《Russian Meteorology and Hydrology》2010,35(11):740-743
Peculiarities are investigated of the air temperature variation tendencies at some stations of the Far East in 1976–2005.
The estimate of linear trend equation coefficients is computed according to the air temperature observation data using the
least squares method. It is demonstrated that the air temperature trend in northern regions possesses a small probability
at small values of residual variability. In the southern regions, the trend significance increases for almost all seasons
at small values of residual variability. At midlatitude stations, the trend significance in January and February decreases
considerably due to the large values of residual variability. 相似文献
15.
Pil-Hun Chang Chun-Ho Cho Sang-Boom Ryoo 《Asia-Pacific Journal of Atmospheric Sciences》2011,47(5):497-501
Recent changes of Mixed Layer Depth (MLD) in the East/Japan Sea (EJS) is investigated by using ocean reanalysis data. There is a significant shoaling of MLD in the southern EJS for 1994-2007, showing the change rate of - 1.24 m yr?1. The present study demonstrates that the wind stress curl mostly attributes to the MLD changes. The long-term variation of wind stress curl with a positive trend in the southern EJS is generally well consistent with the MLD variation. In addition, upward displacement estimated from the wind stress curl reaches 14.6 m during 14 years, which is comparable to the shoaling of MLD (i.e., 17.4 m). Thus, the wind stress curl with positive trend would induce the increase of upward Ekman pumping which in turn lead to the shoaling of MLD. The change of temperature structure in the subsurface layer, that is shrinking and upward displacement of thermal layer from the reanalysis and observational data, also supports this conclusion. 相似文献
16.
Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land–Air–Sea Interaction Perspective 总被引:3,自引:0,他引:3
The impact of surface sensible heating over the Tibetan Plateau(SHTP) on the western Pacific subtropical high(WPSH)with and without air–sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly(SSTA) in the equatorial central Pacific via surface warm advection.Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air–sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land–air–sea interaction framework. 相似文献
17.
18.
Potential impacts of enhanced tropical cyclone activity on the El Ni?o–Southern Oscillation and East Asian monsoon in the mid-Piacenzian warm period 下载免费PDF全文
热带气旋不仅是一种严重的灾害性天气事件,其在气候时间尺度也可通过加强海洋上层垂直混合进而调节全球海洋经向热量输送。基于一个海气耦合模式,本文探讨了强热带气旋活动对皮亚琴察暖期(又称晚上新世暖期;约300万年前)ENSO和东亚季风环流的可能影响。模拟结果表明,热带气旋引起的海洋垂直混合加强可造成热带东太平洋显著增温、温跃层加深,但ENSO年际变率减弱。对东亚季风而言,夏季副热带高压南移且西伸,副热带急流减弱并南移,我国南方西南风加强;冬季东亚大槽加深,副热带急流南移,我国北方偏北风加强。上述模拟结果可增进我们对热带气旋气候反馈作用以及晚上新世暖期全球气候特征的认识。 相似文献
19.
A Possible Impact of Cooling over the Tibetan Plateau on the Mid-Holocene East Asian Monsoon Climate 总被引:5,自引:3,他引:5
By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth’s orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon. 相似文献