首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leech  K.  Crovisier  J.  Bockelée-Morvan  D.  Brooke  T. Y.  Hanner  M. S.  Altieri  B.  Keller  H. U.  Lellouch  E.  Lim  T. 《Earth, Moon, and Planets》1997,78(1-3):81-83
Spectra of comet C/1995 O1 (Hale-Bopp) were obtained with the Infrared Space Observatory (ISO) at medium resolution with the grating spectrometer in the photometer (PHT-S) and/or at high resolution with the short wavelength spectrometer (SWS) and long wavelength spectrometer (LWS) in April 1996 (Crovisier et al., 1996), September–October 1996 (Crovisier et al., 1997a, b) and December 1997, at distances from the Sun of 4.6, 2.9 and 3.9 AU, respectively. For the first time, high-resolution spectra of a comet covering the entire 2.4 to 200 μm spectral range were obtained. The vibrational bands of H2O, CO2 and CO are detected in emission with PHT-S. Relative production rates of 100:22:70 are derived for H2O:CO2:CO at 3 AU pre-perihelion. H2O is observed at high spectral resolution in the ν3 group of bands around 2.7 μm and the ν2 group around 6 μm with SWS, and in several rotational lines in the 100–180 μm region with LWS. The high signal-to-noise ratio of the ν3 band observed on September–October 1996 allows accurate determinations of the water rotational temperature (28 K) and of its ortho-to-para ratio(2.45 ± 0.10, which significantly differs from the high temperature limit and corresponds to a spin temperature of 25 K). Longward of 6 μm the spectrum is dominated by dust thermal continuum emission, upon which broad emission features are superimposed. The wavelengths of the emission peaks correspond to those of Mg-rich crystalline olivine (forsterite). In the September–October 1996 spectra, emission features at 45 and 65 μm and possible absorption at 2.9–3.2 μm suggest that grains of water ice were present at 3 AU from the Sun. The observations made post-perihelion in late December 1997 led to the detections of H2O, CO2 and CO at 3.9 AU from the Sun (Figures 1 and 2). The production rates were ≈3.0 × 1028,3.5 × 1028 and ≈1.5 × 1029 s-1, respectively. This corresponds to H2O:CO2:CO = 100:110:500 and confirms that at such distances from the Sun, cometary activity is dominated by sublimation of CO and CO2 rather than by H2O. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

3.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The results of the photometric observations of comet C/2009 P1 (Garradd) performed at the 60-cm Zeiss-600 telescope of the Terskol observatory have been analyzed. During the observations, the comet was at the heliocentric and geocentric distances of 1.7 and 2.0 AU, respectively. The CCD images of the comet were obtained in the standard narrowband interference filters suggested by the International research program for comet Hale-Bopp and correspondingly designated the “Hale-Bopp (HB) set.” These filters were designed to isolate the BC (λ4450/67 Å), GC (λ5260/56 Å) and RC (λ7128/58 Å) continua and the emission bands of C2 (λ5141/118 Å), CN (λ3870/62 Å), and C3 (λ4062/62 Å). From the photometric data, the dust production rate of the comet and its color index and color excess were determined. The concentration of C2, CN, and C3 molecules and their production rates along the line of sight were estimated. The obtained results show that the physical parameters of the comet are close to the mean characteristics typical of the dynamically new comets.  相似文献   

6.
Peschke  S. B.  Grün  E.  Böhnhardt  H.  Campins  H.  Osip  D. J.  Hanner  M. S.  Heinrichsen  I.  Knacke  R. F.  Leinert  Ch.  Lemke  D.  Stickel  M.  Lisse  C. M.  Sykes  M.  Zarnecki  J. 《Earth, Moon, and Planets》1997,78(1-3):299-304
Comet Hale-Bopp has been observed five times with ISOPHOT, the photometer on board the Infrared Space Observatory (ISO), four times before its perihelion passage at heliocentric distances of 4.92, 4.58, 2.93 and 2.81 AU, and at 3.91 AU postperihelion. Each time, multi-filter photometry covering the range between 3.6–175 μm with eight to ten filters was performed to sample the spectral energy distribution of the comet. These measurements were used to determine dust temperatures for the cometary coma. The evolution of the strength of the silicate feature can be followed in the data as well as the flux deficit at longer wavelengths. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A very long series of photographic observations of the comet Hale-Bopp has been made during January–April 1997 at the double astrograph (400/2000) of the Main Astronomical Observatory (Kyiv, Ukraine). Some of the cometary photos were obtained with two wide-band filter combinations. One of these combinations isolates C2 emission, another — the nearby dust continuum. The images were digitized by means of AMDPH-XY machine and then calibrated following the standard procedure. After subtraction of the dust continuum the distribution of surface brightness in the C2 emission coma of comet Hale-Bopp was studied. We found an asymmetric brightness distribution both pre- and post-perihelion. On 21.77 April 1997 a secondary brightness peak is found at the distance of 1.03 × 105 km from the nucleus. It is possible that this peak is related to the extended source of the C2 molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   

9.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
WAELKENS  C.  MALFAIT  K.  WATERS  L.B.F.M. 《Earth, Moon, and Planets》1997,79(1-3):265-274
The infrared spectrum of comet Hale-Bopp, as observed with the Infrared Space Observatory (ISO), presents astonishing similarities with those of the dusty disks surrounding young stars. The prominent spectral features of crystalline silicates that occur in comets, have been observed in the circumstellar media of young and old stars, yet not in the interstellar medium. We suggest from the analogy with the young-star spectra that the crystalline nature of the silicates in comet Hale-Bopp dates from the early evolution of the solar system, and also that an Oort Cloud or Kuiper Belt is presently forming around young stars observed by ISO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Comet 73P-B/Schwassmann-Wachmann 3 was observed with IRCS/Subaru at geocentric distance of 0.074 AU on UT 10 May 2006. Multiple H2O emission lines were detected in non-resonant fluorescence near 2.9 μm. No significant variation in total H2O production rate was found during the (3 h) duration of our observations. H2O rotational temperatures and ortho-to-para abundance ratios were measured for several positions in the coma. The temperatures extracted from two different time intervals show very similar spatial distributions. For both, the rotational temperature decreased from ∼110 to ∼90 K as the projected distance from the nucleus increased from ∼5 to ∼30 km. We see no evidence for OPR change in the coma. The H2O ortho-para ratio is consistent with the statistical equilibrium value (3.0) for all spatially resolved measurements. This implies a nuclear spin temperature higher than ∼45 K.  相似文献   

12.
Multiple non-resonance fluorescence lines of water (H2O) were detected in Comet 153/P Ikeya-Zhang (2002 C1) between UT 2002 March 21.9 (Rh=0.51 AU) and April 13.9 (Rh=0.78 AU), using the Cryogenic Echelle Spectrometer (CSHELL) at the NASA Infrared Telescope Facility. Analysis of 2.9-μm water lines enabled accurate determination of rotational temperatures on three dates. The derived H2O rotational temperatures were 138+6−5, 141+10−9, and 94±3 K on UT 2002 March 22.0, March 23.0, and April 13.8, respectively. Water production rates were retrieved from spectral lines measured in nineteen separate grating settings over seven observing periods. The derived heliocentric dependence of the water production rate was Q=(9.2±1.1)×1028[Rh(−3.21±0.26)] molecules s−1. The spatial distribution of H2O in the coma was consistent with its release directly from the nucleus (as a native source) on all dates.  相似文献   

13.
In this paper I will review the mid- and far-infrared observations obtained by the Infrared Space Observatory (ISO) in jets and outflows from Young Stellar Objects (YSOs). The spectral range covered by ISO, from ~ 2.5 to 200 μm,includes transitions of the main gas cooling species (i.e. H2, CO, H2O, O) excited at temperatures of ~100–2000 K, which are not usually investigated through ground-based facilities. I will in particular focus on few important science cases addressed by the ISO spectroscopic observations, namely the observations of pure rotational H2 lines, the detection of thermal H2O lines, and the analysis on how the far infrared spectra of jets change with the evolution.  相似文献   

14.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The NASA Ames HIFOGS spectrometer observed comet C/1995 O1 (Hale-Bopp) at epochs including 96 Oct 7–14 UT (2.8 AU), 97 Feb 14–15 UT (1.2 AU), 97 Apr 11 UT (0.93 AU), and 97 Jun 22, 25 UT (1.7 AU). The HIFOGS 7.5–13.5 μm spectrophotometry (R = 360 - 180) of the silicate feature at 2.8 AU is identical in shape to the ISO SWS spectra of comet Hale-Bopp (Crovisier et al., 1997); the strong 11.2 μm peak in the structured silicate feature is identified as olivine. Upon close passage to the sun, the HIFOGS spectra at 1.2 AU and 0.93 AU reveals strong peaks at 9.3 μm and 10.0 μm. The post-perihelion 10 μm silicate feature at 1.7 AU is weaker but has nearly the same shape as the pre-perihelion spectra at 1.2 AU, reverting to its pre-perihelion shape: there is no change in the dust chemistry by close passage to the sun. The appearance of the strong peaks at 9.3 μm and 10.0 μm at rh ≲ 1.7 AU is attributed to the rise in the contribution of pryoxenes (clino-pyroxene and orthopyroxene crystals) to the shape of the feature, and leads to the hypothesis that the pyroxenes are significantly cooler than the olivines. The pyroxenes are radiating on the Wien side of the blackbody at 2.8 AU and transition to the Rayleigh-Jeans tail of the blackbody upon closer approach to the Sun. Composite fits to the observed 10 μm silicate features using IDPs and laboratory minerals shows that a good empirical fit to the spectra is obtained when the pryoxenes are about 150 K cooler than the olivines. The pyroxenes, because they are cooler and contribute signficantly at perihelion, are more abundant than the olivines. The perihelion temperature of the pyroxenes implies that the pyroxenes are more Mg-rich than the other minerals including the olivines, amorphous olivines, and amorphous pyroxenes. The PUMA-1 flyby measurements of comet P/Halley also indicated an overabundance of Mg-rich pryoxenes compared to olivines. Comet Hale-Bopp's pyroxenes are similar to pyroxere IDPs from the ’Spray‘ class, known for their D-richness and their unaltered morphologies: Hale-Bopp's Mg-rich pyroxenes may be pristine relic ISM grains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):484-504
We present an analysis of OH, CN, and C2 jets observed in Comet Hale-Bopp during April 22-26, 1997. We conclude that an extended source, which peaks in productivity after a certain amount of time has passed after being released from the nucleus (8.5, 2.5, and 42.6×104 s, respectively) is responsible for the observed coma jet morphology in all three species. Sub-micron organic grains are the favored explanation for the extended source. Our models indicate that this extended source produces approximately 40% of the OH, 50% of the C2, and 75% of the CN. The balance for each species is created by a diffuse nuclear gas source. Compared with the nuclear gas source and normalized to the CN abundance, the composition of the extended source is depleted in OH by a factor of ∼6, and depleted in C2 by a factor of ∼2. The existence of anti-sunward jets do not require production of radicals throughout the cometary night. Instead, our model demonstrates that active areas exposed to near-twilight conditions throughout the comet's rotational period can produce the observed anti-sunward morphology.  相似文献   

17.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):477-843
We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale-Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale-Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].  相似文献   

18.
R.K. Khanna 《Icarus》2005,178(1):165-170
Infrared spectra of crystalline HC3N and C2H2 were investigated at several temperatures between 15 and 150 K. The characteristics of the 505 and 753 cm−1 bands of HC3N are in complete agreement with the emission spectral data on Titan obtained by the Voyager IRIS instrument, thus confirming the identification of crystalline HC3N on Titan. A composite spectrum in the 720-800 cm−1 region, with contributions from HC3N and C2H2 in crystalline phases, reproduces the Voyager emission data in that region, thus providing a suggestion for the identification of crystalline C2H2 on Titan.  相似文献   

19.
Many new cometary molecules — both parents and daughters — were detected in the exceptionally productive comet C/1995 O1 (Hale-Bopp).The space distribution of several of these species could be investigated from radio interferometry or from long-slit spectroscopy in the infrared. The distinction between parent species — directly sublimated from nucleus ices — and secondary species — resulting from chemical processing in the coma or produced by a secondary source — is not always clear. It is important to assess whether or not observed minor species (HCOOCH3, HCOOH...) could be synthesized by chemical reactions favoured by the high density of the coma of comet Hale-Bopp. Chemical modelling by Rodgers and Charnley suggests that this is notthe case. CO and H2CO are abundant cometary species which partly come from distributed sources. The nature of these sources is still a mystery. A special case, now well documented, is that of HNC, for which the abundance evolution with heliocentric distance could be observed in comet Hale-Bopp and which was observed in several much less productive comets.  相似文献   

20.
Hale-Bopp (C/1995 O1) was the most productive recent comet observed in terms of gas and dust output. Since its discovery in 1995 at a distance of 7.14 AU from the Sun, the comet has been well observed, revealing the dynamics of a rare and large comet. Hale-Bopp showed strong emissions of the principle cometary gases CN, C3, and C2, as well as an abundance of dust. The production rates of these gases were found to be 1.45×1028, 1.71×1028, and , respectively, with dust production, in terms of Afρ, , as measured in the green continuum (5260 Å). The observations for this paper are presented in two groups spanning 10 days each, one group centered near 32 days prior to and the other 21 days after perihelion. The averages of dust and gas production rates show a slightly higher value for each prior to perihelion than after perihelion, consistent with a possible peak in production a few weeks prior to perihelion passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号