首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
 Two iterative vector methods for computing geodetic coordinates (φ, h) from rectangular coordinates (x, y, z) are presented. The methods are conceptually simple, work without modification at any latitude and are easy to program. Geodetic latitude and height can be calculated to acceptable precision in one iteration over the height range from −106 to +109 m. Received: 13 December 2000 / Accepted: 13 July 2001  相似文献   

2.
The development of lasers, new electro-optic light modulation methods, and improved electronic techniques have made possible significant improvements in the range and accuracy of optical distance measurements, thus providing not only improved geodetic tools but also useful techniques for the study of other geophysical, meteorological, and astronomical problems. One of the main limitations, at present, to the accuracy of geodetic measurements is the uncertainty in the average propagation velocity of the radiation due to inhomogeneity of the atmosphere. Accuracies of a few parts in ten million or even better now appear feasible, however, through the use of the dispersion method, in which simultaneous measurements of optical path length at two widely separated wavelengths are used to determine the average refractive index over the path and hence the true geodetic distance. The design of a new instrument based on this method, which utilizes wavelengths of6328 ? and3681 ? and3 GHz polarization modulation of the light, is summarized. Preliminary measurements over a5.3 km path with this instrument have demonstrated a sensitivity of3×10 −9 in detecting changes in optical path length for either wavelength using1-second averaging, and a standard deviation of3×10 −7 in corrected length. The principal remaining sources of error are summarized, as is progress in other laboratories using the dispersion method or other approaches to the problem of refractivity correction.  相似文献   

3.
Vector-based algorithms for the computation of azimuth, elevation and the ellipsoidal normal unit vector from 3D Cartesian coordinates are presented. As a by-product, the formulae for the ellipsoidal normal vector can also be used to iteratively transform rectangular Cartesian coordinates (X, Y, Z) into geodetic coordinates (φ, λ, h) for a height range from −5600 km to 108 km. Comparisons with existing methods indicate that the new transformation can compete with them.  相似文献   

4.
The term “entity” covers, when used in the field of electronic data processing, the meaning of words like “thing”, “being”, “event”, or “concept”. Each entity is characterized by a set of properties. An information element is a triple consisting of an entity, a property and the value of a property. Geodetic information is sets of information elements with entities being related to geodesy. This information may be stored in the form ofdata and is called ageodetic data base provided (1) it contains or may contain all data necessary for the operations of a particular geodetic organization, (2) the data is stored in a form suited for many different applications and (3) that unnecessary duplications of data have been avoided. The first step to be taken when establishing a geodetic data base is described, namely the definition of the basic entities of the data base (such as trigonometric stations, astronomical stations, gravity stations, geodetic reference-system parameters, etc...). Presented at the “International Symposium on Optimization of Design and Computation of Control Networks”, Sopron, Hungary, July 1977.  相似文献   

5.
 A binomial expansion is a powerful tool in geodetic research. It is often used in terrain correction and isostatic compensation. The behaviour, convergence and truncation of the binomial expansion are investigated. The relation of the topographic height H (or the compensation depth), spherical harmonic degree n and the binomial series term m is discussed using theoretical and numerical results. According to the relation, a truncation number M is determined for obtaining an accuracy of 1%, i.e. it can be found how many terms (or power numbers of the topography) should be used in practical calculations. Received: 24 February 1999 / Accepted: 28 June 2000  相似文献   

6.
By using Halley’s third-order formula to find the root of a non-linear equation, we develop a new iterative procedure to solve an irrational form of the “latitude equation”, the equation to determine the geodetic latitude for given Cartesian coordinates. With a limit to one iteration, starting from zero height, and minimizing the number of divisions by means of the rational form representation of Halley’s formula, we obtain a new non-iterative method to transform Cartesian coordinates to geodetic ones. The new method is sufficiently precise in the sense that the maximum error of the latitude and the relative height is less than 6 micro-arcseconds for the range of height, −10 km ≤ h ≤ 30,000 km. The new method is around 50% faster than our previous method, roughly twice as fast as the well-known Bowring’s method, and much faster than the recently developed methods of Borkowski, Laskowski, Lin and Wang, Jones, Pollard, and Vermeille.  相似文献   

7.
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton–Raphson.  相似文献   

8.
《测量评论》2013,45(66):166-174
Abstract

The computation of geographical coordinates in a geodetic triangulation is usually carried out using Puissant's method, in which the assumption is made the sphere radius ν (the radius of curvature of the spheroid perpendicular to the meridian) not only touches the spheroid along the whole small circle of latitude ?,but also, since ρ (the radius of curvature in meridian) is very nearly equal to ν it makes such close contact with the spheroid that the lengths of sides and angles of a geodetic triangle may be considered identical on both sphere and spheroid.  相似文献   

9.
GPS vector configuration design for monitoring deformation networks   总被引:1,自引:0,他引:1  
 The performance of geodetic monitoring networks is heavily influenced by the configuration of the measured GPS vectors. As an effective design of the GPS measurements will decrease GPS campaign costs and increase the accuracy and reliability of the entire network, the identification of the preferred GPS vectors for measurement has been highlighted as a core problem in the process of deformation monitoring. An algorithm based on a sensitivity analysis of the network, as dependent upon a postulated velocity field, is suggested for the selection of the optimal GPS vectors. Relevant mathematical and statistical concepts are presented as the basis for an improved method of vector configuration design. A sensitivity analysis of the geodetic geodynamic network in the north of Israel is presented, where the method is examined against two deformation models, the Simple Transform Fault and the Locked Fault. The proposed method is suggested as a means for the improvement of the design of monitoring networks, a common practice worldwide. Received: 30 July 2001 / Accepted: 3 June 2002 Acknowledgments. It is my pleasant duty to thank the Survey of Israel and Dr. E. Ostrovsky for providing the variance–covariance matrix of the G1 network in northern Israel. I would like to thank the reviewers of this paper for their constructive and helpful remarks.  相似文献   

10.
Cartesian to geodetic coordinates conversion on a triaxial ellipsoid   总被引:1,自引:0,他引:1  
A new method of transforming Cartesian to geodetic (or planetographic) coordinates on a triaxial ellipsoid is presented. The method is based on simple reasoning coming from essentials of vector calculus. The reasoning results in solving a nonlinear system of equations for coordinates of the point being the projection of a point located outside or inside a triaxial ellipsoid along the normal to the ellipsoid. The presented method has been compared to a vector method of Feltens (J Geod 83:129–137, 2009) who claims that no other methods are available in the literature. Generally, our method turns out to be more accurate, faster and applicable to celestial bodies characterized by different geometric parameters. The presented method also fits to the classical problem of converting Cartesian to geodetic coordinates on the ellipsoid of revolution.  相似文献   

11.
The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Γ zz },{Γ xz , Γ yz} and {Γ xx -Γ yy ,2 Γxy}are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.  相似文献   

12.
In November 1968, a marine geodetic control point was established in the Pacific Ocean at a water depth of6,200 feet. The control point (reference point) consists of three underwater acoustic transponders, two of which are powered with lead-acid batteries and the third with an underwater radioisotope power source “URIPS” with a10- to20- year life expectancy. Four independent measuring techniques (LORAC airborne line-crossing, satellite, ship inertial, and acoustic techniques) were used to measure and determine the coordinates of the control point. Preliminary analysis of the acoustic and airborne data indicates that high accuracies can be achieved in the establishment of geodetic reference points at sea. Geodetic adjustment by the method of variation of coordinates yielded a standard point error of±50 to±66 feet in determining the unknown ship station. The original location of the ship station as determined by shipboard navigation equipment was off by about1,600 feet. Paper previously published in the Proceedings of the Second Marine Geodesy Symposium of the Marine Technology Society.  相似文献   

13.
Geodetic surface integrals play an important role in the numerical solution of geodetic boundary-value problems. In many cases they can be evaluated using fast methods in the frequency domain (FFT). However, this is not possible in general, because the domain of integration may be non-trivial (as is the surface of the Earth), the kernel function may not be of convolution type, or the data distribution may be heterogeneous. Therefore, fast evaluation strategies are also required in the space domain. They are more difficult to design because only one property is left where a more or less fast evaluation strategy can be built upon: the potential type of the kernel function. Consequently, the idea is not to replace well-established frequency domain techniques, but to supplement them. Our approach to this problem goes in two directions: (1) we use advanced cubature methods where the integration nodes automatically densify in the vicinity of the evaluation points; (2) we use powerful computer hardware, namely MIMD computers with distributed memory. This enables us to evaluate geodetic surface integrals of any practical complexity in reasonable time and accuracy. This is shown in a numerical example. Received: 7 May 1996 / Accepted:17 March 1997  相似文献   

14.
A new local existence and uniqueness theorem is obtained for the scalar geodetic boundary-value problem in spherical coordinates. The regularities H α and H 1+α are assumed for the boundary data g (gravity) and v (gravitational potential) respectively. Received: 27 July 1998 / Accepted: 19 April 1999  相似文献   

15.
World Geodetic Datum 2000   总被引:7,自引:1,他引:6  
 Based on the current best estimates of fundamental geodetic parameters {W 0,GM,J 2,Ω} the form parameters of a Somigliana-Pizzetti level ellipsoid, namely the semi-major axis a and semi-minor axis b (or equivalently the linear eccentricity ) are computed and proposed as a new World Geodetic Datum 2000. There are six parameters namely the four fundamental geodetic parameters {W 0,GM,J 2,Ω} and the two form parameters {a,b} or {a,ɛ}, which determine the ellipsoidal reference gravity field of Somigliana-Pizzetti type constraint to two nonlinear condition equations. Their iterative solution leads to best estimates a=(6 378 136.572±0.053)m, b=(6 356 751.920 ± 0.052)m, ɛ=(521 853.580±0.013)m for the tide-free geoide of reference and a=(6 378 136.602±0.053)m, b=(6 356 751.860±0.052)m, ɛ=(521 854.674 ± 0.015)m for the zero-frequency tide geoid of reference. The best estimates of the form parameters of a Somigliana-Pizzetti level ellipsoid, {a,b}, differ significantly by −0.39 m, −0.454 m, respectively, from the data of the Geodetic Reference System 1980. Received: 1 February 1999 / Accepted: 31 August 1999  相似文献   

16.
New solutions for the geodetic coordinate transformation   总被引:5,自引:2,他引:5  
 The Cartesian-to-geodetic-coordinate transformation is approached from a new perspective. Existence and uniqueness of geodetic representation are presented, along with a clear geometric picture of the problem and the role of the ellipse evolute. A new solution is found with a Newton-method iteration in the reduced latitude; this solution is proved to work for all points in space. Care is given to error propagation when calculating the geodetic latitude and height. Received: 9 August 2001 / Accepted: 27 March 2002 Acknowledgments. The author would like to thank the Clifford W.␣Tompson scholarship fund, Dr. Brian DeFacio, the University of Missouri College of Arts &Sciences, and the United States Air Force. He also thanks a reviewer for suggesting and providing a prototype MATLAB code. A MATLAB program for the iterative sequence is presented at the end of the paper (Appendix A).  相似文献   

17.
The algorithm to transform from 3D Cartesian to geodetic coordinates is obtained by solving the equation of the Lagrange parameter. Numerical experiments show that geodetic height can be recovered to 0.5 mm precision over the range from −6×106 to 1010 m. Electronic Supplementary Material: Supplementary material is available in the online version of this article at  相似文献   

18.
Resume Après de nombreuses années d’hésitation, on a finalement reconnu, au Congrès de Florence, en 1955, que dans le repérage des altitudes, seule la notion depotentiel était claire et sans ambigu?té, l’altitude au sens courant du terme étant conventionnelle. De la même fa?on, pour le repérage géométrique des points à la surface de la Terre, les coordonnées (X Y Z) des points, dans letrièdre cartésien terrestre général, sont les inconnues fondamentales; les coordonnées géodésiques couramment utilisées (longitude, latitude altitude H au-dessus de l’ellipso?de) sont conventionnelles. Mais pratiquement, afin d’écrire commodément les relations d’observation, il para?t intéressant de passer par l’intermédiaire detrièdres locaux (trièdres laplaciens), liés de fa?on invariable au système cartésien général, et de repérer toutes les grandeurs dans ces trièdres locaux. Toutes les observations utilisées en Géodésie s’expriment de fa?on simple et sans singularités dans ces trièdres locaux. La jonction des triangulations classiques, l’Astrogéodésie, la synthèse des Géodésies classique et spatiale sont facilitées. En astronomie de position, les grandeurs longitude, latitude, azimut, sont avantageusement remplacées par: déviation Est-Ouest, déviation Nord-Sud, azimut de Laplace. Les relations d’observation s’écrivent sans difficulté, même dans les régions polaires. L’application pratique des nouvelles formules obtenues a été réalisée avec succès par L.F. Gregerson (Service Géodésique du Canada).
Summary At Florence, in 1955, it was accepted that, in the problems of levelling, the notion ofpotential was scientifically clear, and that the altitude could derive from it only through a conventional process. In the same manner, when we want to have a geometric reference of the points at the earth surface, we use the coordinates (X Y Z) in thegeneral cartesian trihedron as fundamental unknowns, the geodetic coordinates (λϕH) deriving from (X Y Z) through a conventional process. Practically, in order to set up the observation equations, it is necessary to define local trihedrons (laplacian trihedrons), deriving from the cartesian general system through a fixed transformation, and to refer all the unknowns in these local trihedrons. All the observations used in Geodesy can be expressed simply and without any singularity in these local trihedrons. The links between classical geodetic nets, the astrogeodesy, the combination between classical and spatial geodesy, become easier. In astronomical controls, “longitude, latitude, azimut” must be replaced by: W-E deflection, N-S deflection and Laplace azimuth. Thus all the observation equations can be set, even in polar regions. A practical application of the new formulae was done successfully by L.F. Gregerson (Geodetic Survey of Canada).
  相似文献   

19.
It is shown that also in a rank deficient Gauss-Markov model higher weights of the observations automatically improve the precision of the estimated parameters as long as they are computed in thesame datum. However, the amount of improvement in terms of the trace of the dispersion matrix isminimum for the so-called “free datum” which corresponds to the pseudo-inverse normal equations matrix. This behaviour together with its consequences is discussed by an example with special emphasis on geodetic networks for deformation analysis.  相似文献   

20.
In satellite data analysis, one big advantage of analytical orbit integration, which cannot be overestimated, is missed in the numerical integration approach: spectral analysis or the lumped coefficient concept may be used not only to design efficient algorithms but overall for much better insight into the force-field determination problem. The lumped coefficient concept, considered from a practical point of view, consists of the separation of the observation equation matrix A=BT into the product of two matrices. The matrix T is a very sparse matrix separating into small block-diagonal matrices connecting the harmonic coefficients with the lumped coefficients. The lumped coefficients are nothing other than the amplitudes of trigonometric functions depending on three angular orbital variables; therefore, the matrix N=B T B will become for a sufficient length of a data set a diagonal dominant matrix, in the case of an unlimited data string length a strictly diagonal one. Using an analytical solution of high order, the non-linear observation equations for low–low SST range data can be transformed into a form to allow the application of the lumped concept. They are presented here for a second-order solution together with an outline of how to proceed with data analysis in the spectral domain in such a case. The dynamic model presented here provides not only a practical algorithm for the parameter determination but also a simple method for an investigation of some fundamental questions, such as the determination of the range of the subset of geopotential coefficients which can be properly determined by means of SST techniques or the definition of an optimal orbital configuration for particular SST missions. Numerical results have already been obtained and will be published elsewhere. Received: 15 January 1999 / Accepted: 30 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号