首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a linear analysis of the vertical structure and growth of the magnetorotational instability in stratified, weakly ionized accretion discs, such as protostellar and quiescent dwarf novae systems. The method includes the effects of the magnetic coupling, the conductivity regime of the fluid and the strength of the magnetic field, which is initially vertical. The conductivity is treated as a tensor and is assumed to be constant with height.
We obtained solutions for the structure and growth rate of global unstable modes for different conductivity regimes, strengths of the initial magnetic field and coupling between ionized and neutral components of the fluid. The envelopes of short-wavelength perturbations are determined by the action of competing local growth rates at different heights, driven by the vertical stratification of the disc. Ambipolar diffusion perturbations peak consistently higher above the midplane than modes including Hall conductivity. For weak coupling, perturbations including the Hall effect grow faster and act over a more extended cross-section of the disc than those obtained using the ambipolar diffusion approximation.
Finally, we derived an approximate criterion for when Hall diffusion determines the growth of the magnetorotational instability. This is satisfied over a wide range of radii in protostellar discs, reducing the extent of the magnetic 'dead zone'. Even if the magnetic coupling is weak, significant accretion may occur close to the midplane, rather than in the surface regions of weakly ionized discs.  相似文献   

2.
We investigate the stability of the Hall‐MHD system and determine its importance for neutron stars at their birth, when they still consist of differentially rotating plasma permeated by extremely strong magnetic fields. We solve the linearised HallMHD equations in a spherical shell threaded by a homogeneous magnetic field. With the fluid/flow coupling and the Hall effect included, the magnetorotational instability and the Hall effect are both acting together. Results differ for magnetic fields aligned with the rotation axis and anti‐parallel magnetic fields. For a positive alignment of the magnetic field the instability grows on a rotational time‐scale for any sufficiently large magnetic Reynolds number. Even the magnetic fields which are stable against the MRI due to the magnetic diffusion are now susceptible to the shear‐Hall instability. In contrast, the negative alignment places strong restrictions on the growth and the magnitude of the fields, hindering the effectiveness of the Hall‐MRI. While non‐axisymmetric modes of the MRI can be suppressed by strong enough rotation, there is no such restriction when the Hall effect is present. The implications for the magnitude and the topology of the magnetic field of a young neutron star may be significant (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A criterion for the magnetorotational instability of a protostellar disk in which the dust particles are assumed to be well mixed with the gas over the entire disk volume has been obtained within the framework of Hall magnetohydrodynamics. It is shown that the dusty plasma component affects significantly the Hall current and, under certain conditions, can cause its direction to be reversed compared to the case of a weakly ionized electron-ion plasma. A significant expansion of the range of wave numbers for unstable magnetic fluctuations is a consequence of the Hall current reversal. The spatial localization of the regions of protostellar disks in which not only the long-wavelength Alfvén disturbances but also the short-wavelength ones are subject to the magnetorotational instability is investigated. Possible physical consequences of the presence of anomalously active zones in cold disks for their structure and evolution are pointed out.  相似文献   

4.
There are several astrophysical situations where one needs to study the dynamics of magnetic flux in partially ionized turbulent plasmas. In a partially ionized plasma, the magnetic induction is subjected to the ambipolar diffusion and the Hall effect in addition to the usual resistive dissipation. In this paper, we initiate the study of the kinematic dynamo in a partially ionized turbulent plasma. The Hall effect arises from the treatment of the electrons and the ions as two separate fluids and the ambipolar diffusion due to the inclusion of neutrals as the third fluid. It is shown that these non-ideal effects modify the so-called α effect and the turbulent diffusion coefficient β in a rather substantial way. The Hall effect may enhance or quench the dynamo action altogether. The ambipolar diffusion brings in an α which depends on the mean magnetic field. The new correlations embodying the coupling of the charged fluids and the neutral fluid appear in a decisive manner. The turbulence is necessarily magnetohydrodynamic with new spatial and time-scales. The nature of the new correlations is demonstrated by taking the Alfvénic turbulence as an example.  相似文献   

5.
We consider nonaxisymmetric magnetosonic oscillations of a radially stratified, weakly ionized protoplanetary disk with a vertical magnetic field. The combined effect of the Hall electric field and the density and magnetic field inhomogeneities present in the disk has been previously predicted to lead to an instability of its small azimuthal perturbations. We revise the previous results and take into account the effect of inhomogeneous ionization of the protoplanetary material related to the inhomogeneity of the disk medium. We show that the instability criterion is governed by three parameters: the magnetic field and ionization fraction gradients and the plasma β. We have found that at high values of β typical of protoplanetary disks, the instability does not manifest itself if the gradients are directed oppositely. In the case of codirectional gradients, the interaction of magnetosonic fluctuations with inhomogeneities of a fixed size is resonant in character, giving rise to an instability in a narrow range of wave numbers.  相似文献   

6.
We study role of the Hall diffusion in the magnetic star-disc interaction. In a simplified steady state configuration, the total torque is calculated in terms of the fastness parameter and a new term because of the Hall diffusion. We show the total torque reduces as the Hall term becomes more significant. Also, the critical fastness parameter (at which the total torque is zero) reduces because of the Hall diffusion.  相似文献   

7.
We check whether the currents of inhomogeneities (diffusion, thermodiffusion, and gradient ones) can exist at the photospheric level. For this purpose, the vertical currents are compared with the theoretically estimated currents of inhomogeneities; our comparison shows them to be of the same order of magnitude. Therefore, the currents of inhomogeneities actually exist in the solar photosphere; their exact values are determined by the (electron density, temperature, and magnetic field) gradients, which are not known very well at present. This paper continues the current tendency in describing the atmospheric magnetic field (in particular, its fine structure) that consists in allowing for the Hall, diffusion, and thermodiffusion currents.  相似文献   

8.
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary disks. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface. Magnetically-driven mixing has implications for disk chemistry and evolution of the grain population, and the effective viscous response of the disk determines whether planets migrate inwards or outwards. However, the weak ionisation of protoplanetary disks means that magnetic fields may not be able to effectively couple to the matter. I examine the magnetic diffusivity in a minimum solar nebula model and present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas, except at the disk surfaces where the low density of neutrals permits the ions to remain attached to the field lines. For a standard population of 0.1 μm grains the active surface layers have a combined column Σactive≈2 g cm−2 at 1 AU; by the time grains have aggregated to 3 μm, Σactive≈80 g cm−2. Ionisation in the active layers is dominated by stellar X-rays. In the absence of grains, X-rays maintain magnetic coupling to 10% of the disk material at 1 AU (i.e. Σactive≈150 g cm−2). At 5 AU the Σactive≈Σtotal once grains have aggregated to 1 μm in size.  相似文献   

9.
The breakdown of flux-freezing in molecular clouds and protostellar discs is usually approximated by ambipolar diffusion at low densities or by resistive diffusion at high densities. Here an intermediate regime is discussed in which the Hall term in the conductivity tensor is significant, and the vector evolution of the magnetic field, and therefore the evolution of the system under consideration is dramatically altered. Calculations of charged particle abundances in dense gas in molecular clouds and protostellar discs demonstrate that Hall diffusion is important over a surprisingly broad range of conditions.  相似文献   

10.
Astronomy Letters - Small perturbations of a protostellar disk with vertical and azimuthal magnetic field components are considered in terms of Hall magnetohydrodynamics. The dispersion equation...  相似文献   

11.
We consider the generation of a magnetic field in the Galaxy by the electric currents excited by cosmic-ray particles in the disk and halo. We assume that the sources of relativistic particles are distributed continuously and uniformly in the Galactic disk, their total power is equal to the observed value, and the particles themselves undergo anisotropic diffusion in a homogeneous medium. We take into account the differential rotation of the Galactic disk but disregard the turbulence gyrotropy (the α effect). The strength of the generated magnetic field in our model is shown to strongly depend on the symmetry of the relativistic proton and thermal electron diffusion tensors, as well as on the relations between the tensor components. In particular, if the diffusion is isotropic, then no magnetic field is generated. For the independent tensor components estimated from observed parameters of the Galactic medium and with a simultaneous allowance made for the turbulent field dissipation processes, the mechanism under consideration can provide an observable magnetic-field strength of the order of several microgauss. This mechanism does not require any seed magnetic field, which leads us to suggest that relativistic particles can give an appreciable and, possibly, determining contribution to the formation of the global Galactic magnetic field. However, a final answer can be obtained only from a nonlinear self-consistent treatment, in which the symmetry and magnitude of the particle diffusion tensor components should be determined together with the calculation of the magnetic field.  相似文献   

12.
We study the magneto-thermal instability in ionized plasmas including the effects of Ohmic, ambipolar and Hall diffusion. The magnetic field in the single-fluid approximation does not allow for transverse thermal condensations; however, non-ideal effects highly diminish the stabilizing role of the magnetic field in thermally unstable plasmas. Therefore, the enhanced growth rate of thermal condensation modes in the presence of the diffusion mechanisms speed up the rate of structure formation.  相似文献   

13.
计算了粘滞演化阶段原太阳吸积盘结构。采用稳态标准吸积盘模型来描述盘中湍动粘滞;忽略其径向能量传输,将垂直结构作为一维问题处理。假设盘作Keplerian较差旋转,处于流体力学平衡和局域热平衡,盘由粘滞耗散加热,能量通过对流和辐射向外传输。结果表明,对温度敏感的不透明度是决定盘结构的重要因素;原太阳吸积盘为冷的薄盘,盘中热对流不稳定性由外而内,由上而下地终结;行星的形成应首先开始于对流终结的区域。  相似文献   

14.
When modelling astrophysical fluid flows, it is often appropriate to discard the canonical magnetohydrodynamic approximation, thereby freeing the magnetic field to diffuse with respect to the bulk velocity field. As a consequence, however, the induction equation can become problematic to solve via standard explicit techniques. In particular, the Hall diffusion term admits fast-moving whistler waves which can impose a vanishing time-step limit.
Within an explicit differencing framework, a multifluid scheme for weakly ionized plasmas is presented which relies upon a new approach to integrating the induction equation efficiently. The first component of this approach is a relatively unknown method of accelerating the integration of parabolic systems by enforcing stability over large compound time-steps rather than over each of the constituent substeps. This method, Super Time-Stepping, proves to be very effective in applying a part of the Hall term up to a known critical value. The excess of the Hall term above this critical value is then included via a new scheme for pure Hall diffusion.  相似文献   

15.
Following the work of Garcia et al. (2001a) (GFCB), we compute the thermal properties and ionization structure of magnetically-driven disk winds. The original model's dominant heating function along the jet, ambipolar diffusion, is augmented by a mechanical heating term supposed to arise from weak shocks, as used by (Shang et al., 2002). We add this mechanical heating function to a cold disk wind model and calculate its effect on the jet as a whole. The temperature and ionization of the flow are calculated in the case of cold jet solutions consistent with the underlying accretion disk (Ferreira, 1997). These solutions are compared to those of (GFCB) in order to quantitatively determine the effect of the mechanical heating on the flow. We then use the computed thermal and ionization structures to calculate jet synthetic observations. We find that the addition of mechanical heating leads to higher electron fractions, in turn leading to increased line fluxes and line ratios approaching observed values.  相似文献   

16.
Hall effects on the hydromagnetic free convection resulting from the combined effects of thermal and mass diffusion of an electrically conducting liquid past an infinite vertical porous plate in a rotating system have been analysed. The expressions for the mean velocity, mean temperature in the boundary layer and the mean skin friction, the mean rate of heat transfer on the plate are derived. The effects of magnetic parameterM, Hall parameterm, Schmidt number Sc, and Ekman numberE on the flow field, are discussed with the help of graphs and tables.  相似文献   

17.
18.
By taking magnetic stress in place of viscosity as the mechanism for angular moaentum transfer, the effect of frozen magnetic field on the structure of a geometrically thin accretion disk is examined. It is shown that the disk is quasi-Keplerian and its total luminosity is twice the luminosity in the standard disk model. In the inner region, there exists a narrow cool region and the highly collimated jet is formed under the action of the azimuthal component of the magnetic field. Also, we discuss the possibility that a magnetized corona be formed near the surface of the accretion disk and a wide band radiation issuing therefrom. The model suggested here can easily and reasonably explain the major AGN properties such as the radiation variation, the “bumps” in the optical, ultraviolet and soft X-ray ranges, etc.  相似文献   

19.
MHD in protostellar discs is modified by the Hall current when the ambipolar diffusion approximation breaks down. Here I examine the Balbus–Hawley (magnetorotational) instability of a weak, vertical magnetic field within a weakly ionized disc. Vertical stratification is neglected, and a linear analysis is undertaken for the case in which the wavevector of the perturbation is parallel to the magnetic field.
The growth rate depends on whether the initial magnetic field is parallel or antiparallel to the angular momentum of the disc. The parallel case is less (more) unstable than the antiparallel case if the Hall current is dominated by negative (positive) species. The less-unstable orientation is stable for χ ≲0.5, where χ is the ratio of a generalized neutral–ion collision frequency to the Keplerian frequency. The other orientation has a formal growth rate of the order of the Keplerian angular frequency even in the limit χ →0! In this limit the wavelength of the fastest-growing mode tends to infinity, so the minimum level of ionization for instability is determined by the requirement that a wavelength fit within a disc scaleheight. In the ambipolar diffusion case, this requires χ > v A c s; in the Hall case this imposes a potentially much weaker limit,      相似文献   

20.
The stars of the middle main sequence often have spot‐like chemical structures at their surfaces. We consider diffusion caused by electric currents and argue that such current‐driven diffusion can form chemical inhomogeneities in a plasma. The considered mechanism can contribute to a formation of element spots in Hg‐Mn and Ap‐stars. Due to the Hall effect, diffusion in the presence of electric currents can be accompanied by the propagation of a particular type of magnetohydrodynamic modes in which only the impurity number density oscillates. Such modes exist if the magnetic pressure is much greater than the gas pressure and can be the reason for variations of the abundance peculiarities in stars. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号