首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Spring blooms of phytoplankton composed of centric diatoms developed in late February, March, and April in Otsuchi Bay on Sanriku ria coast, Japan. During this period, associated with prolonged seasonal west wind (>1 day), intense exchange of waters occurred between inside and outside the bay: outflow of nearsurface brackish water over inflow of oceanic water at depth. This circulation interrupted formation of the blooms, and transported phytoplankton populations seaward. By such water movements, a significant amount of nutrients in the bay was carried out, otherwise replenished into the bay, depending on water masses located outside the bay. Owing to irregular features of wind events, a bloom lasted from several days to a week. From February to April, supply of nutrients seemed to be replete except for the latter half of the bloom period, and estimates of the critical depth exceeded the depth of the bottom consistently. Thus, net growth of phytoplankton was expected throughout the observation period, and potentially blooms could be formed. However, the blooms were only formed under calm weather. We hypothesize that the exchange of waters dilutes populations in the bay, and that formation of the bloom, that is, accumulation of biomass depends on a balance between the growth of phytoplankton and the dilution of bay water.  相似文献   

3.
4.
5.
6.
Hydrographic observations were made in Otsuchi Bay on the Sanriku ria coast, Japan, to provide clear images of the baroclinic circulation extending over the bay together with the associated intrusion of lower-layer water (bottom water) from outside the bay. In summer, a prominent baroclinic circulation with flow speeds \({>} 0.1\ \text{ m }\ \text{ s }^{-1} \) extends over the greater part of the bay. A main pycnocline (thermocline), which separates the upper and lower layers, is located at a depth of 15–40 m in and around the bay. The direction of the lower-layer flow (inflow into and outflow from the bay) is opposite to that of the upper-layer flow, which are baroclinically coupled to each other. Moreover, with regard to the lower-layer flow, the inflow tends to occur mainly through the northwestern part of the bay mouth, whereas the outflow tends to occur mainly through the southeastern part. The inflow and outflow alternate on time scales of several to a few tens of hours, and the flow directions are sometimes related to the tidal ones, although the relationship is not applied persistently. In winter, the baroclinic circulation is considerably weaker than in summer, because the stratification breaks down.  相似文献   

7.
A numerical simulation of Otsuchi Bay located on the northeast coast of the Honshu, the largest island of Japan, is conducted, using an ocean general circulation model (OGCM) with a nested-grid system in order to illustrate seasonal variability of the circulation in the bay. Through a year, an anticlockwise circulation is dominant in the bay, as observational studies have implied, although it is modified in the bay-mouth-half of the bay in winter. In addition, there is an intense outflow at the surface layer during spring to autumn, influenced by river water discharge. Intrusion of the Pacific water into the bay is influened by mean circulations, but it is also influenced by baroclinic tides from spring to autumn. Pacific water intrusions affected by baroclinic tides may have an impact on the environment in Otsuchi Bay.  相似文献   

8.
Abstract. A seagrass bed in Otsuchi Bay, northeastern Japan, consists of three seagrass species ( Zostera marina, Z. caulescens and Z. caespitosa ) that differ in morphology and phenology. We studied the mobile epifaunal community in the seagrass bed to examine (1) whether seasonal and between-substrate variation in the epifaunal community agrees with variation in seagrass abundance and morphological complexity, and (2) whether patterns of seasonal and between-substrate variation vary among epifaunal species. We collected mobile epifauna from each of Z. marina and Z. caulescens on 11 occasions between October 1995 and November 1996 (at 1 – 1.5 month intervals) using a hand-closing net. A total of 9 842 individuals of mobile epiphytic animals were collected and they were classified into 80 taxa. Abundance and species richness of the epifaunal community were high in summer to autumn and low in winter to spring, and diversity index and evenness were higher in Z. marina than Z. caulescens . However, patterns of seasonal and between-substrate variation in these parameters did not parallel those in seagrass abundance and complexity. Most of the dominant epifaunal species showed significant seasonal and between-substrate variation in abundance, although their patterns varied greatly among individual species. A cluster analysis recognized several distinct groups of animals showing similar seasonal and between-substrate variation. Our findings suggest that the observed variation in the epifaunal community is not determined by a single or some strong external factors but by complex interactions of multiple factors operating differently for each component species.  相似文献   

9.
Through 2004 and 2005, δ 34S of sinking material from Otsuchi Bay was measured at the center and rocky shore of the bay. At the center of the bay δ 34S was high (18∼21‰) in the material collected from April to November. However, δ 34S was low (9∼14‰) in the material collected from December to March. The increase in δ 34S in April was attributed to an increase in phytoplankton biomass because marine phytoplanktonic δ 34S is high. When δ 34S of sinking material was low, input of riverine material or bottom sediment resuspension were considered as the probable causes, because their δ 34S is low. Marine sulfur was always high (more than 70%) at both stations. The difference between the δ 34S of sinking material collected from the different sampling stations indicates that marine macroalgae contribute to sinking material near the shore when phytoplankton is scarce. In conclusion, the relative influence of different material sources to sinking materials could be successfully estimated using δ 34S.  相似文献   

10.
The hydrodynamics and water quality in Hakata Bay, Japan, are strongly affected by the seasonal variations in both the gravitational circulation and the stratification in the bay. The three-dimensional hydrodynamics and water quality model has been developed to simulate the long-term transport and fate of pollutants in the system. The model is unique in that it completely integrates the refined modelling of the hydrodynamics, biochemical reactions and the ecosystem in the coastal areas. It is a 3-dimensional segmented model which is capable of resolving mean daily variations in all the parameters relevant to pollution control. It predicts daily fluctuations in the oxygen content at different depths in water throughout the year. It takes into account transport and settling of pollutant particles. It predicts light penetration from computed turbidity variations. It includes interactions between the ecosystem and water quality, through nutrient cycling and photosynthesis. The model has been calibrated well against the data set of historical water quality observations in Hakata Bay.  相似文献   

11.
Real-time monitoring of wind and surface waves in Otsuchi Bay, Iwate, Tohoku, Japan, commenced in October 2012, using a mooring buoy with an ultrasonic anemometer and a single-mode GPS wave sensor. Wind and wave data are distributed hourly in real time via the Internet along with a chart of their time series. We analyzed data monitored in the first 3 months in order to assess the variability and occurrence of wind and waves and to elucidate the main reasons for wave variation in Otsuchi Bay. The monitoring data revealed that surface waves in the bay were predominantly affected by swells propagated from the northeastern offshore region and that the wave height was significantly correlated with the component of wind velocity toward Otsuchi Bay in the northeastern offshore region that faces the bay mouth. The offshore wind field was expected to provide information useful for predicting coastal waves in a ria bay in Sanriku such as Otsuchi Bay. However, it should be emphasized that the horizontal distribution of the offshore wind field which has a significant effect on the surface waves in a ria bay depends heavily on the topographic shape of the bay.  相似文献   

12.
Mooring and hydrographic observations were conducted from September 2012 to May 2014 at the mouth of Otsuchi Bay, a ria along the Pacific coast of Japan. Our observations quantitatively demonstrated that the circulation and the water properties of Otsuchi Bay are strongly influenced by the Tsugaru Warm Current (TWC) and Oyashio Current (OY) at seasonal and subseasonal time scales. Two bottom-mounted velocity profilers and temperature and salinity measurements beneath the near-surface halocline showed a counterclockwise lateral circulation pattern related to the TWC, which was enhanced from summer to autumn. From winter to early spring, the lateral circulation patterns related to the TWC weakened and the influence of the OY occasionally increased. When the OY was weak, surface flows became an overturning structure, with outflows in the upper layer and inflows in the lower layer. When the OY was strong and passed close to the Sanriku coast, the circulation became highly variable and intermittent. Intrusions of the markedly low-salinity OY water were observed on two occasions and persisted for periods of several weeks to several months. Salinity was sometimes less than 33.7, the lower limit of the typical TWC from late summer to autumn even when the TWC dominates. We suggested that this is the seasonal fluctuations of the TWC itself, as the upstream current of the Tsushima Warm Current is freshened in summer as a result of the influence of the Changjiang River. The surface water was generally fresher in the south of the bay than in the north, suggesting the Coriolis deflection of the river plume.  相似文献   

13.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

14.
基于水东湾海域利用现状及水环境综合整治工作的迫切需要,对其海洋水文要素开展野外调查,以清晰理解其潮流特征,并据此进行潮流三维数值模拟.调查结果显示,水东湾观测期间的实测潮差在2.6~2.9 m之间,平均潮差约2.8 m,湾口潮差最大,湾顶海域潮差最小,涨潮历时略长于落潮,属不正规半日潮;各观测站位的最大流速相差较大,最高值出现在湾口深槽,为134 cm/s,最低值出现在湾顶浅海海域,为31 cm/s,最大流速水平分布基本上呈现为从湾口向湾顶递减态势.模拟结果显示,水东湾内潮流基本沿潮汐通道呈往复流动,涨潮流向介于280°~300°之间,流速在0.28~1.36 m/s范围内变化;落潮流向介于128°~180°之间,流速在0.56~1.44 m/s范围内变化,流矢受地形限制显著.  相似文献   

15.
Observations of synoptic variability from CTD and current meter measurements in Wakasa Bay, Japan in summer of 1980 and 1981 are compared with the results of 1979 reported by Yamagata, Umatani, Masunaga and Matsuura (1984). It is suggested that the speed and direction of propagation can basically be explained in terms of shelf wave dynamics.In the 1980 event, a dense (colder and more saline) water advanced eastward along the north coast at about 10 km day−1. The lateral scale of the phenomenon was about 30 to 40 km, in agreement with the Rossby internal radius of deformation. The T-S and current data suggest that the 1980 cold event was dominated by phase propagation. In the 1981 event, a light (warmer and less saline) water area advanced eastward at the speed similar to the 1980 cold event, but the T-S and current data suggest that Lagrangian drift of water particles associated with strong eddy motions was not negligible.  相似文献   

16.
Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and formation mechanism of salinity fronts are analyzed and discussed. The research shows that the estuarine fronts mainly lie in the area from the Jiyu Islet to the Haimen Island, outside of Yuweizai to Hulishan cross-section, the near coast of Yuweizai and the south of the Songyu-Gulangyu Channel. The fronts in the former two regions are formed directly by plume, while the one near the coast of Yuweizai is a tidal intrusion front caused by flood current and the one at the south of the Songyu-Gulangyu Channel is the result of current shear transformation. Under normal circumstances, fresh water of the Jiulong River mainly influences the inside of the Xiamen Bay, and when it is in typhoon seasons, plume front can affect the Taiwan Strait and has an effect on the biogeochemical processes in the strait.  相似文献   

17.
The residual currents in Tokyo Bay during four seasons are calculated diagnostically from the observed water temperature, salinity and wind data collected by Unokiet al. (1980). The calculated residual currents, verified by the observed ones, show an obvious seasonal variable character. During spring, a clear anticlockwise circulation develops in the head region of the bay and a strong southwestward current flows in the upper layer along the eastern coast from the central part to the mouth of the bay. During summer, the anticlockwise circulation in the head region is maintained but the southwestward current along the eastern coast becomes weak. During autumn, the preceding anticlockwise circulation disappears but a clockwise circulation develops in the central part of the bay. During winter, the calculated residual current is similar to that during autumn. As a conclusion, the seasonal variation of residual current in Tokyo Bay can be attributed to the variation of the strength of two eddies. The first one is the anticlockwise circulation in the head region of the bay, which develops in spring and summer and disappears in autumn and winter. The second one is the clockwise circulation in the central part of the bay, which develops in autumn and winter, decreases in spring and nearly disappears in summer.  相似文献   

18.
19.
The seasonal variation of water circulation in the Seto Inland Sea is investigated using a high resolution, three-dimensional numerical ocean model. The model results are assessed by comparison with long-term mean surface current and hydrographic data. The simulated model results are consistent with observations, showing a distinct summer and winter circulation patterns. In summer the sea water is highly stratified in basin regions, while it is well mixed near the straits due to strong tidal mixing there. During this period, a cold dome is formed in several basins, setting up stable cyclonic eddies. The cyclonic circulation associated with the cold dome develops from May and disappears in autumn when the surface cooling starts. The experiment without freshwater input shows that a basin-scale estuarine circulation coexists with cyclonic eddy in summer. The former becomes dominant in autumn circulation after the cold dome disappears. In winter the water is vertically well mixed, and the winter winds play a significant role in the circulation. The northwesterly winds induce upwind (downwind) currents over the deep (shallow) water, forming a “double-gyre pattern” in the Suo-Nada, two cyclonic eddies in Hiuchi-Nada, and anticyclonic circulation in Harima-Nada in vertically averaged current fields.  相似文献   

20.
In this study, a three-dimensional numerical model is used to study the wave interaction with a vertical rectangular pile. The model employs the large eddy simulation (LES) method to model the effect of small-scale turbulence. The velocity and vorticity fields around the pile are presented and discussed. The drag and inertial coefficients are calculated based on the numerical computation. The calculated coefficients are found to be in a reasonable range compared with the experimental data. Additional analyses are performed to assess the relative importance of drag and initial effects, which could be quantified by the force-related Keulegan and Carpenter (KC) number: KCf=UT/(4πL). Here U is the maximum fluid particle velocity, T the wave period and L the length of structure aligned with the wave propagation direction. For small KCf, the effective drag coefficient is proportional to 1/KCf, provided the wavelength is much longer than the structural length. When wavelength is comparable to the structure dimension, the effective drag coefficient would be reduced significantly due the cancellation of forces, which has been demonstrated by numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号