首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002–2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM10, PM2.5 and PM1 levels at MSY during 2002–2007 were 16, 14 and 11 µg/m3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM2.5 and PM10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.  相似文献   

3.
大气气溶胶尺度分布分形特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
气溶胶作为大气环境中的重要组成部分,具有复杂的尺度分布结构。为研究其尺度分布特征,采用分形理论首先论述了常用的气溶胶谱分布函数具有分形不变性,然后在分形理论的指导下分别建立了气溶胶粒子和体积分形统计模型,而且以AERONET相关数据验证了分形模型的有效性和实用性,并采用分段分形的方法改进了气溶胶体积分形模型。最后分析研究了分维数的实用意义和分布情况,讨论了气溶胶分维数变化和粒度分布的关系。结果表明:气溶胶粒子数和体积分维数之间存在线性关系,上半年的大气溶胶粒子数分维数的变化幅度明显小于下半年的变化幅度;研究区域大气气溶胶中细粒子分布比较密集,大粒子分布比较分散。分形理论为研究大气气溶胶的尺度分布特征提供了新的方法与手段,具有广阔的研究与应用前景。  相似文献   

4.
利用2009年石家庄地区的4次机载PMS探测资料,对不同天气条件下大气气溶胶的数浓度、平均直径垂直分布和谱分布及一次晴天条件下的水平分布进行分析。结果表明:PCASP 探头探测的0.1-3.0 μm气溶胶粒子最大数浓度的量级为102-104 cm-3之间,平均值量级为102-103 cm-3之间,平均直径最大值介于0.225-0.717 μm,平均值介于0.148-0.167 μm。晴天条件下,气溶胶的数浓度随高度递减,直径随高度变化不大;逆温层底气溶胶明显积累,气溶胶浓度在大气边界层内明显高于其他层次;阴天轻雾情况下边界层内的气溶胶数浓度大于雨天和晴天,雨天气溶胶浓度最低;晴天气溶胶数浓度的水平分布不均匀;在云中气溶胶浓度明显下降,在云外气溶胶浓度较高。不同天气条件和晴天不同高度情况下,石家庄地区气溶胶谱型呈单峰分布,小于0.3 μm的细粒子对气溶胶的数浓度贡献最大,且随着高度的增加谱宽变窄。  相似文献   

5.
回顾了关于长距离输送对中国区域本底大气臭氧的影响,以及中国区域大气本底站臭氧变化及其区域代表性两方面的研究进展。来自不同污染源区O3的长距离输送对中国区域O3影响的研究结果分歧较大,贡献最显著的源区和受体地区也存在争议;同时,鲜有研究考虑到平流层对对流层的O3贡献,而这部分贡献在前体物排放很少的本底地区非常重要。中国区域各大气本底观测站分别与其周围一定范围内的区域具有相同的对流层O3柱浓度最大值月份分布,而对与人体健康密切相关的近地面O3区域特征的分析尚未深入开展;鉴于研究方法的局限性,也尚未深入揭示形成O3变化区域特征的复杂成因。基于现有研究进展和不足之处,如何利用全球大气化学-环流模式的示踪模拟结果,定量评估来自全球不同地区的O3对中国本底大气O3的影响,并进一步评估中国区域6个大气本底站近地面O3季节变化的区域代表性,是亟待解决的科学问题。  相似文献   

6.
This paper reports aerosol chemical properties for the first time over a Korean Global Atmosphere Watch (GAW) supersite, Anmyeon (36°32′N; 126° 19′E), during 2003–2004 period. Total suspended Particulates (TSP) showed significant seasonal variation with consistent higher mass concentrations during spring season (average of up to 230?±?190 μg/m3). PM10 also followed similar trend with higher concentrations during spring (average of up to 170?±?130 μg/m3) and showed reduced concentrations during summer. PM2.5 showed a significant increase during summer (average of up to 60?±?25 μg/m3), which could be due to the influx of fine mode sea salt aerosols associated with the Changma front (summer monsoon). Chemical composition analysis showed enhanced presence of acidic fractions, majorly contributed by sulphates (SO 4 2- ) and nitrates (NO 3 - ) in TSP, PM10 and PM2.5 during different seasons. Enhanced presence of Calcium (Ca2+) was observed during sand storm days during spring. The high correlation obtained on matrix analysis between crustal ions and acidic ions suggests that the ionic compositions over the site are mainly contributed by terrestrial sources of similar origin. The neutralization factors has been estimated to find the extend of neutralization of acidicity by main basic components, and found to have higher value for Ammonium (up to 1.1) in different seasons, indicating significant neutralization of acidic components over the region by NH 4 + . Back trajectory analysis has been performed during different seasons to constrain the possible sources of aerosol origin and the results are discussed in detail.  相似文献   

7.
8.
9.
The total suspended particulate (TSP) levels at Delhi (north India) were measured on 116 days between February and October 1980. The observations were stratified according to season and the values of cross-correlation of the TSP and its components were evaluated. High TSP (209 g m-3) levels were found during the summer period associated with hot and dry weather in the region and low TSP (109 g m-3) were found during the monsoon period. Most of the TSP mass was associated with natural soil elements, such as Fe, Al, Mn, Ca, and K. Only a fraction of the mass of the TSP was comprised of elements from anthropogenic sources, e.g., Pb, Ni, Cd, Sb, Cu, and Zn. The aerosols at Delhi were potentially basic in nature, unlike those in European countries which are acidic in nature and cause acid rainfall.  相似文献   

10.
《Atmospheric Research》2007,83(3-4):622-632
Electron paramagnetic resonance (EPR) was used to study the chemical form of iron, manganese and other paramagnetic species in airborne particles collected on southern coastal part of the North Sea, located in France. In parallel, chemical analysis was performed to obtain the metal concentrations in samples whereas an individual analysis of particles was provided by scanning electron microscopy coupled to an energy-dispersive X-ray spectrometer (SEM-EDX). EPR spectra have evidenced Fe3+ and Mn2+ ions in the form of isolated or agglomerated species, as well as carbonaceous products with variable signal intensities according to the wind direction. The monitoring of a signal of isolated Mn2+ ions on a distance close to 90 km was proposed as tracer of particles from a Mn local emission source. Fe3+ signals are relative to agglomerated species and differences in the type of interaction between these species were evidenced following the wind direction. Fe3+ EPR signals parameters revealing antiferromagnetic contribution in Fe-rich particles were found for an industrial origin at Dunkerque.  相似文献   

11.
Electron paramagnetic resonance (EPR) was used to study the chemical form of iron, manganese and other paramagnetic species in airborne particles collected on southern coastal part of the North Sea, located in France. In parallel, chemical analysis was performed to obtain the metal concentrations in samples whereas an individual analysis of particles was provided by scanning electron microscopy coupled to an energy-dispersive X-ray spectrometer (SEM-EDX). EPR spectra have evidenced Fe3+ and Mn2+ ions in the form of isolated or agglomerated species, as well as carbonaceous products with variable signal intensities according to the wind direction. The monitoring of a signal of isolated Mn2+ ions on a distance close to 90 km was proposed as tracer of particles from a Mn local emission source. Fe3+ signals are relative to agglomerated species and differences in the type of interaction between these species were evidenced following the wind direction. Fe3+ EPR signals parameters revealing antiferromagnetic contribution in Fe-rich particles were found for an industrial origin at Dunkerque.  相似文献   

12.
During the MILAGRO campaign, March 2006, eight-stage cut impactors were used to sample atmospheric particles at Tecámac (T1 supersite), towards the northeast edge of the Mexico City Metropolitan Area, collecting fresh local emissions and aged pollutants produced in Mexico City. Particle samples were analyzed to determine total mass concentrations of Ca2+, Mg2+, NH4 +, K+, Cl?, SO4 2?, and NO3 ?. Average concentrations were 22.1 ± 7.2 μg m?3 for PM10 and 18.3 ± 6.2 μg m?3 for PM1.8. A good correlation between PM10 and PM1.8, without influence from wind patterns, indicates that local emissions are more important than the city’s pollution transported to the site, despite the fact that Tecámac is just 40 km away from Mexico City. A lack of diurnal patterns in the PM2.5/PM1.8 ratio supports this conclusion. The inorganic composition of particles suggests that vehicles, soil resuspension, and industries are the main pollutant sources. Finally, the particles were found to be neutralized, in agreement with observations in the Mexico City Metropolitan Area.  相似文献   

13.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

14.
利用西太平洋编号台风资料、NOAA卫星观测的地球向外长波辐射(OLR)资料、全球海表温度(SST)资料以及NCEP/NCAR逐日再分析资料,对2012年7—8月西太平洋地区生成并登陆或影响我国的台风特征及大尺度环流背景进行了初步分析。结果表明:7月中旬至8月底是当年台风生成和登陆的高度集中期,登陆比例之高、对我国影响范围之大等特征实属罕见;南亚高压偏强,中高纬"两脊一槽"环流型,东北地区为高压脊区,副热带高压稳定、强度增强且偏西偏北是这一时期的大气环流特征;副热带高压脊线位置在30°N以北有利台风初生,其南界位置偏北时,有利于部分台风生成于较高纬度,西伸指数持续偏高有利于台风集中登陆;夏季风明显增强和季风槽(ITCZ)位置变化、7—8月西太平洋SST正异常和OLR负异常可能是造成台风多发的原因,异常区域北界偏北也许是造成台风生成纬度偏北的原因。  相似文献   

15.
Measurements of hydroperoxides (H2O2 and MHP) at ground level were made from 2012 to 2015 in Imizu City, Toyama Prefecture in central Japan. H2O2 and MHP concentrations ranged from 0.01 to 3.5 ppb and from below the level of detection (< 0.01 ppb) to 1.4 ppb, respectively. The concentrations of H2O2 and MHP were high in the summer and low in the winter. The H2O2 concentration was at its maximum in July and August, whereas the concentration of O3 in the daytime was highest in May and June. The ratio of [H2O2]/[SO2] presented clear seasonal variations. Many cases showed the condition of [H2O2] < [SO2], called oxidant limitation especially in the cold months. Hydroperoxide concentrations in the rainwater were also high in the summer. The concentrations of MHP were much lower than those of H2O2 in the rain water. High concentrations of H2O2 (> 2.5 ppb) were detected in the summer during the inflow of air pollution. The concentrations of H2O2 were significantly high in July and August of 2013. The H2O2 was well correlated with the O3 in July and August whereas there was no correlation between O3 and H2O2 in May and June. There was a negative correlation between NOX and H2O2.  相似文献   

16.
利用轨迹分析法、印痕分析和流场分析法,结合上甸子站卤代温室气体H-1301、HCFC-22、CFC-11和SF6在线浓度观测数据,选取2012年9月7-12日上甸子测站卤代温室气体浓度短期波动典型个例进行分析.轨迹分析结果表明:7日12时,污染发生前,气团主要来自较远的偏西北、偏北方向,水平输送距离长,移动迅速,垂直高度高,对应的卤代温室气体浓度偏低,H-1301、HCFC-22、CFC-11和SF6的体积分数分别为4x10-12、350x10-12、260x10-12、10x10-12;9、10日有一定比例的气团在测站的偏南区域近地面回旋打转,水平输送距离短,垂直高度低,在边界层内缓慢移动,不利于污染物在边界层内扩散,导致卤代温室气体浓度偏高,对测站浓度的短期抬升贡献较大,9日12时H-1301、HCFC-22、CFC-11的峰值体积分数分别达到45x10-12、1 200x 10-12、310x10-12,10日03时SF6的峰值体积分数达到28x10-12;11日西南方向回旋气团消失;12日气团完全来自较远的西北方向且轨迹移动较快.印痕分析与轨迹分析结果一致:7、8日敏感性系数较高区域主要分布在测站以北,9、10日敏感性系数较高区域分布在测站偏南,11、12日测站偏南的敏感性系数较高区域消失.流场分析结果表明:9、10日环流形势有利于污染物在测站区域累积,造成测站浓度的短期抬升.  相似文献   

17.
Systematic year-round observations of submicron aerosols were carried out at Syowa Station (69°00'S, 39°35'E) in 1978. On the basis of the results of these observations, it is concluded that two types of aerosols originating from different sources are present in the Antarctic croposphere. With the intrusion of maritime air, mostly in the polar night months, sea salt particles and ammonium sulfate particles contained originally in the clean maritime air are dominant. The size distribution of such aerosols is monomodal, having a single mode at around 0.03 m in radii. On the other hand, in the sunlit months, sulfuric acid droplets are predominant and the size distribution is bimodal, having an additional mode at around 0.005 m in radii. Those sulfuric acid particles seem to be formed photochemically within a specific layer in the mid to lower troposphere over Antarctica. Most Antarctic submicron particles are of tropospheric origin, not of stratospheric nor anthropogenic origin.  相似文献   

18.
19.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

20.
In this study, total suspended particles (TSP) and size-segregated atmospheric aerosol samples were measured on Qianliyan Island in the Yellow Sea in spring (April–May), summer (July–August) and fall (October–November) of 2006 and in water (January–February) of 2007. The mass concentration of the TSP varied from 75.6 to 132.0 μg/m3. The average concentration were 9.37 ± 7.56 μg/m3 and 5.32 ± 4.25 μg/m3 for nitrate and ammonium in the TSP, respectively. TSP concentration showed a significant correlation with those of nitrate (n = 27, r = 0.73) and ammonium (n = 27, r = 0.60). The mass-size distribution of atmospheric particles exhibited two modes with an accumulation mode at 0.43–1.1 μm and a coarse mode at 3.3–4.7 μm throughout the sampling months. A bi-modal size distribution of nitrate in concentration occurred in the April–May, October–November and January–February, but a uni-modal size distribution occurred in the August. The uni-modal size distribution of ammonium at 0.43–0.65 μm was observed throughout the sampling months. The average of inorganic nitrogen in mass concentration accounted for 4.0% of the total mass of aerosol particles while ammonium-N was the dominant fraction of TIN (Total Inorganic Nitrogen), contributing to 62–71% of the TIN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号