首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric tracer dispersion experiments have been carried out to measure the statistical characteristics (variance, frequency distribution, spectrum) of the concentration downwind of a pair of partly overlapping plumes. By releasing different tracer substances from each source, it was possible to identify the contributions of the two sources at a given measurement point, both separately and jointly, and thus to compare and interpret the joint statistics in terms of those from the individual sources.Statistics for the individual sources agree well with, and support, existing wind tunnel and theoretical results. Nondimensionalization of the data using the mean concentration and the lateral width of the plume as concentration and length scales successfully removes much of the variation due to changes in atmospheric and surface conditions.Measurements of the correlation between the concentration contributions from separated sources are consistent with recent wind tunnel measurements. Entirely new measurements of the frequency distribution of the combined concentration from a pair of sources show that in many situations, high concentrations relative to the mean occur much less frequently than for an isolated source. Generally the extent of the reduction in frequency of occurrence is inversely related to the degree of correlation between concentrations from the two sources.  相似文献   

2.
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).  相似文献   

3.
4.
We analyze gust probe measurements obtained in the convective boundary layer over the central equatorial Pacific as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) program. From the lowest level flights, the bulk transfer coefficients are found to be 1.1 × 10-3 and 1.4 × 10-3 for latent and sensible heat fluxes, respectively. Vertical profiles of water vapor density, potential temperature and wind velocity are obtained as are the profiles of the fluxes of latent and sensible heat and momentum. From the extrapolated profiles, we obtain surface fluxes of 120 W m-2 and 13 W m-2 for latent and sensible heat, respectively, and 0.11 N m-2 for momentum. The 10 m drag coefficient is 1.5 × 10-3. Two convergence boxes, north and south of the ITCZ, are analyzed. Enhanced convergence is found in the northern trades relative to the southern trades. The advective acceleration is found to be comparable in magnitude to the other terms in the horizontal equations of motion.  相似文献   

5.
Diurnal wind variations are examined at the Boulder Atmospheric Observatory which is located 25 km east of the foothills of the Rocky Mountains. Data were obtained from a 300-m tower which was instrumented at eight levels and operated almost continuously for three weeks during September 1978. Observations on clear days, for which the diurnal heating and cooling of the local terrain slopes can be expected to affect the winds, show that daytime winds tend to be easterly (upslope) throughout the 300-m depth. At night, a temperature inversion typically develops to about 100 m. Below this level, the nocturnal flow tends to be downslope; above the inversion, a distinctly different regime of flow develops. A diurnal wind oscillation, characterized by strong southerly flow beginning near sunset and ending near midnight, occurred in the upper layer on 25% of the days during the study period. Rapid clockwise rotation of the wind vector occurred during the period of increased wind speed. This oscillation occurred only on days when the synoptic-scale geostrophic wind was southerly. It is suggested that this non-steady state behavior is an inertial oscillation affected by the diurnally varying temperature gradients and local topography.  相似文献   

6.
During a haze event in Baltimore, U.S.A. from July 6 to 8, 2002, smoke from forest fires in the Québec region (Canada), degraded air quality and impacted upon local climate, decreasing solar radiation and air temperature. The smoke particles in and above the atmospheric boundary layer (ABL) served as a tracer and provided a unique opportunity to investigate the ABL structure, especially entrainment. Elastic backscatter lidar measurements taken during the haze event distinctly reveal the downward sweeps (or wisps) of smoke-laden air from the free atmosphere into the ABL. Visualisations of mechanisms such as dry convection, the entrainment process, detrainment, coherent entrainment structures, and mixing inside the ABL, are presented. Thermals overshooting at the ABL top are shown to create disturbances in the form of gravity waves in the free atmosphere aloft, as evidenced by a corresponding ripple structure at the bottom of the smoke layer. Lidar data, aerosol ground-based measurements and supporting meteorological data are used to link free atmosphere, mixed-layer and ground-level aerosols. During the peak period of the haze event (July 7, 2002), the correlation between time series of elastic backscatter lidar data within the mixed layer and the scattering coefficient from a nephelometer at ground level was found to be high (R=0.96 for z =324 m, and R=0.89 for z=504 m). Ground-level aerosol concentration was at a maximum about 2 h after the smoke layer intersected with the growing ABL, confirming that the wisps do not initially reach the ground.  相似文献   

7.
Clear-air plume and wave-like structures are revealed in the atmospheric boundary layer by combined acoustic remote sensing and meteorological tower measurements. The magnitude of turbulent production and dissipation plus properties of velocity and temperature spectra determined from the tower measurements are well correlated with phenomena indicated by the acoustic sounder. Interpretation of either set of records is greatly enhanced by the other. For example, the onset of a sudden burst of turbulent production from the tower measurements may correspond to plume passage or breaking of stable waves recorded by the acoustic echo sounder.  相似文献   

8.
9.
Through simultaneous measurements, it is possible to demonstrate the relation between sea swell and surface temperature as measured by a thermoradiometer onboard an aircraft. Thermodynamic measurements made on board the aircraft enable analysis of the interaction between swell and surface marine layer dynamics. The cospectral functions of vertical turbulent transfer for sensible and latent heat indicate large-scale dynamic structures which would seem to be initiated by inhomogeneities in the humidity field. A cross-spectral examination of temperature and humidity produces a structure that is common to both parameters and is caused by swell propagation. The data used here were collected during the TOSCANE-T experiment, whose aim was to validate remote sensing scatterometer techniques, by means of an instrumented aircraft designed for atmospheric research.  相似文献   

10.
Flow over a two-dimensional obstacle and dispersion of a heavier-than-air gas near the obstacle were studied. Two species, one representing air and the other representing the heavier-than-air gas were treated. Equations for mass and momentum were cast in mass-averaged form, with turbulent Reynolds stresses and mass fluxes modeled using eddy-viscosity and diffusivity hypotheses. A two-equation k- turbulence model was used to determine the effective turbulent viscosity. Streamline curvature and buoyancy corrections were added to the basic turbulence formulation. The model equations were solved using finite difference techniques. An alternating-direction-implicit (ADI) technique was used to solve the parabolic transport equations and a direct matrix solver was used to solve the elliptic pressure equation.Mesh sensitivities were investigated to determine the optimum mesh requirements for the final calculations. It was concluded that at least 10 grid spaces were required across the obstacle width and 15 across the obstacle height to obtain valid solutions. A non-uniform mesh was used to concentrate the grid points at the top of the obstacle.Experimental measurements were made with air flow over a 7.6 by 7.6 cm obstacle in a boundary-layer wind tunnel. Smoke visualization revealed a low-frequency oscillation of the bubble downstream of the obstacle. Hot-wire anemometer data are presented for the mean velocity and turbulent kinetic energy at the mid-plane of the obstacle and the mid-plane of the downstream recirculation bubble. A single hot-wire probe was found to be suitable for determining mean streamwise velocities with an accuracy of 11 %. The downstream recirculation bubble was unsteady and had a length range from 3 to 8 obstacle lengths.The experimental results for flow over the obstacle were compared with numerical calculations to validate the numerical solution procedure. A sensitivity study on the effect of curvature correction and variation of turbulence model constants on the numerical solution was conducted. Calculations that included the curvature correction model gave a downstream recirculation bubble length of 5.9 obstacle lengths while excluding the correction reduced this length to 4.4.In the second part of the study, numerical calculations were performed for the dispersion of a heavier-than-air gas in the vicinity of the two-dimensional obstacle. Characteristics of an adiabatic boundary layer were used in these calculations. The densities of the contaminant gases were 0, 25 and 50% greater than the air density. Calculations were performed with the contaminant injection source upstream and downstream of the obstacle.Use of the pressure gradient model reduced the size of the dense gas cloud by as much as 12%. The curvature correction model also affected the cloud expanse by reducing the effective turbulent viscosity in the downstream recirculation bubble. The location of the injection source had the largest impact on the cloud size. The area of the cloud within the 5 % contour was three times larger for downstream injection than for upstream injection.  相似文献   

11.
Summary The back radiation has been measured with an Eppley pyrgeometer on board the R/V Vickers in the tropical Pacific Ocean during the field campaigns COARE (Coupled Ocean Atmosphere Response Experiment) and CEPEX (Central Equatorial Pacific Experiment) in February and March 1993, respectively. As part of these compaigns radiosondes have been launched from the Vickers several times per day and cloud cover was observed frequently. The radiosonde and cloud observations are used together with a radiative transfer model to calculate the back radiation for a subsequent intercomparison with the pyrgeometer measurements. Another means of comparison is derived from space-borne SSM/I (Special Sensor Microwave/Imager) measurements. The mean difference between pyrgeometer measurements and simulated downwelling irradiance at the sea surface is less than 2 W/m2, at a mean of 425 W/m2 in the warm pool, with a standard deviation of 8 W/m2. The comparison of satellite measurements with pyrgeometer readings shows a mean difference of-3 W/m2 and a standard deviation of 14 W/m2. The mean difference between satellite-derived back radiation and simulated one is 3 W/m2 with a standard deviation of 14 W/m2. Comparisons with results obtained from bulk formulae applied to surface meteorological observations show a good performance of the bulk parameterisations in the cloud-free case but a general overestimation of the back radiation in cloudy situations.With 5 Figures  相似文献   

12.
In early 1982 a station capable of sampling atmospheric trace gas constituents on a continuous basis was established at Palmer Station, Anvers Island, adjacent to the Antarctic Peninsula (64° 46S 64° 04W). Sampling operations began about 1 February 1982. This is an initial report on this station, its location, equipment and general research objectives along with some initial sampling results. The constituents being measured and recorded were: ozone, methane, carbon dioxide, carbon monoxide, CCl3F (fluorocarbon-11), CCl2F2 (fluorocarbon-12), carbontetrachloride, methylchloroform, nitrous oxide, and Aitken nuclei (CN). Data storage, data processing, and sampling system control is handled by a Hewlett-Packard 85 system. Preliminary analyses of about the first 20–22 months of data are presented and show not only the expected long-term trends but also shorter period concentration cycles that seem to be related to synoptic meteorology.  相似文献   

13.
Measurements of the concentrations of H2O2 and methyl hydroperoxide (MHP), O3, and SO2 over Imizu City, Toyama Prefecture, Japan were performed in March using a helicopter. H2O2 concentrations were higher at an altitude of approximately 2,400 m (8,000 ft). The H2O2 concentrations (< 0.8 ppb) in the spring were much lower than those observed during the summer observations. MHP was also higher in the high-altitude atmosphere. Lower concentrations of H2O2 were observed when high air pollutants were actively transported from Asian continent. The concentrations of H2O2 were mostly lower than those of SO2; this condition is called oxidant limitation. If H2O2 concentration rises in cold months, the acidification of cloud water may be accelerated at high elevations in central Japan where air pollution is actively transported.  相似文献   

14.
Sodar observations from three nights of the HAPEX-MOBILHY experiment have been used to compute covariances between single measurements of the three velocity components. From these, estimates of a low frequency friction velocityu * are derived which show better correlation with observed values of the stable boundary layer (SBL) height,h, than directu *-measurements by an ultrasonic anemometer. On the contrary, interdiurnal variability ofh is better correlated with directu *-measurements. These findings should be mainly due to the problem of different spectral and spatial representativity of the twou *-values.  相似文献   

15.
Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector/topographic target and backscatter from atmosphere, are available for studying remotely the atmos-pheric NO2 concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved ap-proaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the sur-face layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that arc suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.  相似文献   

16.
A simple prognostic model of the depth of the stable boundary layer is developed which includes both the possibilities of growth due to entrainment and decreasing depth associated with turbulence decay. The model is designed to avoid requirement of surface fluxes and instead uses information on profiles of mean wind and temperature. Resulting coefficients for the model are estimated by comparisons with existing studies in the literature and comparison with Wangara data.On leave from the Dept of Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, U.S.A.  相似文献   

17.
18.
The possible chaotic nature of the turbulence of the atmospheric boundary layer in and above a decidious forest is investigated. In particular, this work considers high resolution temperature and three-dimensional wind speed measurements, gathered at six alternative elevations at Camp Borden, Ontario, Canada (Shawet al., 1988). The goal is to determine whether these time series may be described (individually) by sets of deterministic nonlinear differential equations, such that: (i) the data's intrinsic (and seemingly random) irregularities are captured by suitable low-dimensional fractal sets (strange attractors), and (ii) the equation's lack of knowledge of initial conditions translates into unpredictable behavior (chaos). Analysis indicates that indeed all series exhibit chaotic behavior, with strange attractors whose (correlation) dimensions range from 4 to 7. These results support the existence of a low-dimensional chaotic attractor in the lower atmosphere.  相似文献   

19.
Summary Evaporation and sensible heat flux have been calculated for each month over the Polar Ocean and the Norwegian-Barents Sea. Sverdrup's evaporation formula was used, and it was first examined how the K-coefficient in that formula depends on the wind speed frequency distribution. Thus the effect of the Arctic wind conditions could be taken into account. Seasonal maps were constructed of mean wind speed. Previously obtained surface temperatures were used, but some additional examinations were carried out, using various assumptions for extreme surface temperatures in summer and winter.Evaporation and sensible heat flux were calculated separately for the following areas: Central Polar Ocean, Kara-Laptev Sea, East Siberian Sea, Beaufort Sea, and belts of 5° latitude of the Norwegian-Barents Sea.The values for the different areas are presented in tables and figures. Evaporation over ice surfaces has a double maximum—in spring and fall—and a main minimum in winter. Over open water surfaces the evaporation shows a summer minimum and a broad maximum in winter. If small parts of the ocean were to remain open longer in the fall, or during the whole winter, the heat loss would increase very rapidly.Sensible heat flux is often calculated from evaporation by theBowen ratio. The small evaporation values over the Polar Ocean give unreliable values for sensible heat flux, and instead the formula byShuleikin was used. This permits the determination of sensible heat flux independent of evaporation. The characteristic sensible heat flux curves are quite similar to the evaporation curves. The open water areas in the Polar Ocean show very high values for sensible heat flux. One percent open water, from October to May would increase the heat flux from the Central Polar Ocean from 3.7 to 5.2 Kcal cm–2, year–1. Open areas must remain small as there is not sufficient energy available to maintain such fluxes.Finally, a table gives the monthly values of the total heat loss for the various areas, by evaporation and sensible heat flux.
Zusammenfassung Monatswerte für Verdunstung und Wärmefluß wurden für das Polarmeer und für Nordmeer-Barentssee berechnet. Zur Verdungstungsberechnung wurde die Formel vonSverdrup benutzt, deren K-Koeffizient in seiner Windabhängigkeit neu berechnet wurde. Auf Grund neu konstruierter jahreszeitlicher Karten der mittleren Windgeschwindigkeit konnten die arktischen Windverhältnisse berücksichtigt werden. Wegen der Unsicherheit früher bestimmter Oberflächentemperaturen wurden zusätzliche Berechnungen für Extremfälle im Sommer und Winter durchgeführt, um mögliche Fehlerquellen abzuschätzen. Verdunstung sowie Wärmefluß wurden gesondert für die folgenden Gebiete berechnet: Zentrales Polarmeer, Kara-Laptev-See, Beaufort-See sowie für Bänder von 5° Breite im Gebiet Nordmeer-Barentssee.Die Resultate für die einzelnen Gebiete werden an Hand von Diagrammen und Tabellen diskutiert. Über Eis zeigt die Verdunstung ein doppeltes Maximum im Frühling und Herbst und das Hauptminimum im Winter, während sich über offenem Wasser ein Sommerminimum und ein breites Wintermaximum ergeben. Es zeigt sich, daß bereits relativ kleine Wasserflächen, die länger im Herbst oder während des ganzen Winters offen bleiben, im Polarmeer zu sehr hohen Wärmeverlusten führen.Der Wärmefluß wird oft auf Grund der Verdunstung mit Hilfe derBowen-Formel berechnet. Wegen der geringen Verdunstung über dem Polarmeer führt diese Formel jedoch zu unrichtigen Werten, und es wird deshalb hier dieShuleikin-Formel benützt, die eine Bestimmung des Wärmeflusses unabhängig von der Verdunstung ermöglicht; die charakteristischen Kurven des Wärmeflusses sind den Verdunstungskurven sehr ähnlich. Offenes Wasser im Polarmeer führt auch hier zu sehr hohen Werten; eine offene Wasserfläche von 1% in der Zeit von Oktober bis Mai würde den Wärmefluß vom zentralen Polarmeer von 3,7 auf 5,2 Kcal/cm2 pro Jahr erhöhen. Offene Flächen müssen daher klein bleiben, da der Energievorrat nicht genügend groß für die Aufrechterhaltung eines solchen Energieflusses wäre. Zum Schlusse werden in einer Tabelle Monatswerte der gesamten Wärmeverluste durch Verdunstung und Wärmefluß für die verschiedenen Gebiete gegeben.

Résumé On a calculé des valeurs mensuelles de l'évaporation et du flux de chaleur pour l'Océan Glacial Arctique et pour la région située entre la Mer du Groenland et la Mer de Barents. Dans le cas de l'évaporation, on s'est servi de la formule deSverdrup dont on a déterminé à nouveau le coefficient K en tenant compte de sa dépendance du vent. Il a été possible de tenir compte du vent dans les régions arctiques grâce à l'établissement récent de cartes saisonnières de la vitesse moyenne du vent. En raison de l'incertitude des déterminations antérieures de la température de surface, on a procédé à des calculs supplémentaires pour des cas extrêmes en été et en hiver afin d'évaluer les sources d'erreurs possibles. On a calculé séparément l'évaporation et le flux de chaleur pour les régions suivantes: Centre de l'Océan Glacial Arctique, Mer de Kara-Mer de Laptev, Mer de Beaufort ainsi que pour de bandes de 5° de largeur dans la région comprise entre la Mer du Groenland et la Mer de Barents.On discute les résultats obtenus pour ces différentes zones en partant de diagrammes et de tableaux. Au-dessus de la glace, l'évaporation présente deux maximums, l'un au printemps, l'autre en automme et un minimum principal en hiver. Sur la mer libre, on constate au contraire un minimum en été et un maximum très large en hiver. Il en résulte que des surfaces libres de glace relativement peu étendues qui se maintiennent en automne, voire durant tout l'hiver peuvent déjà provoquer des pertes de chaleur considérables dans l'Océan Glacial Arctique.On calcule souvent le flux de chaleur en se basant sur l'évaporation selon la formule deBowen. Cependant, en raison des faibles évaporations constatées sur l'Océan Glacial, cette formule conduirait à des valeurs fausses. On a donc utilisé ici la formule deShuleikin qui permet la détermination du flux de chaleur indépendamment de l'évaporation. Les courbes caractéristiques du flux de chaleur sont très semblables à celles de l'évaporation. Les surfaces libres de glace de l'Océan Glacial conduisent ici aussi à des valeurs très élevées. Une surface d'eau de 1% restant libre de glace d'octobre à mai augmenterait de flux de chaleur de l'océan de 3,7 à 5,2 Kcal/cm2 par année. Les surfaces d'eau doivent donc rester très petites, car les réserves d'énergie sont insuffisantes pour maintenir un tel flux d'énergie calorifique. On donne enfin dans une table les pertes mensuelles totales de chaleur dues à l'évaporation et au flux de chaleur et cela pour chacune des régions considérées.


With 6 Figures

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(604)7415.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号