首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

2.
The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.  相似文献   

3.
 This paper presents a site-specific conceptual model of groundwater flow in fractured damage zones associated with faulting in a package of sedimentary rocks. The model is based on the results of field and laboratory investigations. Groundwater and methane gas inflows from fault-fracture systems in the West Elk coal mine, Colorado, USA, have occurred with increasing severity. Inflows of 6, 160 and 500 L s−1 discharged almost instantaneously from three separate faults encountered in mine workings about 460 m below ground level. The faults are about 600 m apart. The δ 2H and δ 18O compositions of the fault-related inflow waters and the hydrodynamic responses of each fault inflow indicate that the groundwaters discharge from hydraulically isolated systems. 14C data indicate that the groundwaters are as much as 10,500 years old. Discharge temperatures are geothermal (≈30°C), which could indicate upwelling from depth. However, calculations of geothermal gradients, analysis of solute compositions of groundwater in potential host reservoirs, geothermometer calculations, and results of packer testing indicate that the fractured groundwater reservoir is the Rollins Sandstone (120 m thick) directly beneath the coal seams. The packer test also demonstrates that the methane gas is contained in the coal seams. A geothermal gradient of 70–80°C km−1, related to an underlying intrusion, is probably responsible for the slightly elevated discharge temperatures. Large discharge volumes, as great as 8.2×105 m3 from the 14 South East Headgate fault (14 SEHG), rapid declines in discharge rates, and vertical and horizontal permeability (matrix permeability generally <0.006 Darcy) indicate fracture flow. An in-mine pumping test demonstrates that the 14 SEHG fault has excellent hydraulic communication with fractures 50 m from the fault. Aeromagnetic data indicate that the faults are tectonically related to an igneous body that is several thousand meters below the coal seams. Exploratory drilling has confirmed a fourth fault, and two additional faults are projected, based on the aeromagnetic data. The conceptual model describes a series of parallel, hydraulically separate groundwater systems associated with fault-specific damage zones. The faults are about 600 m apart. Groundwater stored in fractured sandstone is confined above and below by clayey layers. Received March 1999 / Revised, November 1999 / Accepted, December 1999  相似文献   

4.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

5.
6.
Mass movement can be activated by earthquakes, rapid snowmelt, or intense rainstorms in conjunction with gravity. Whereas mass movement plays a major role in the evolution of a hillslope by modifying slope morphology and transporting material from the slope to the valley, it is also a potential natural hazard. Determining the relationships of frequency and magnitude of landslides are fundamental to understanding the role of landslides in the study of landscape evolution, hazard assessment, and determination of the rate of hillslope denudation. We mapped 735 shallow and active landslides in the Paonia to McClure Pass area of western Colorado from aerial photographs and field surveys. The study area covers ~815 km2. The frequency–magnitude relationships of the landslides illustrate the flux of debris by mass movement in the area. The comparison of the probability density of the landslides with the double Pareto curve, defined by power scaling for negative slope (α), power scaling for positive slope (β), and location of rollover (t), shows that α?=?1.1, β?=?1.9, and t?=?1,600 m2 for areas of landslides and α?=?1.15, β?=?1.8, and t?=?1,900 m3 for volumes of landslides. The total area of landslides is 4.8?×?106 m2 and the total volume of the landslides is 1.4?×?107 m3. The areas (A) and the volumes (V) of landslides are related by V?=?0.0254?×?A 1.45. The frequency–magnitude analysis shows that landslides with areas ranging in size from 1,600 to 20,000 m2 are the most hazardous landslides in the study area. These landslides are the most frequent and also do a significant amount of geomorphic work. We also developed a conceptual model of hillslope development to upland plateau driven by river incision, shallow landsliding, and deep-seated large landsliding. The gentle slope to flat upland plateau that dominated the Quaternary landscape of the study area was modified to the present steep and rugged topography by the combined action of fluvial incision and glacial processes in response to rock uplift, very-frequent shallow landsliding, and less-frequent deep-seated landsliding.  相似文献   

7.
《GeoJournal》1989,18(4):458-458

Reports

Geographical Information Systems (GIS) in urban planning  相似文献   

8.

Reports

1990 Watershed Management Symposium Durango, Colorado, USA  相似文献   

9.
康小兵  罗声  许模  刘宏 《中国岩溶》2018,37(4):527-534
四川华蓥山中段地区水流失比较严重,供需矛盾突出,水环境持续恶化,不但影响到居民正常的生产和生活,而且严重影响了该地区国民经济的建设和发展。通过野外调查和综合分析现场收集的资料,总结出华蓥山中段地区地下水资源量流失情况:该区每年流失的水资源量约为0.914 4亿m3,且华蓥山褶皱西翼水流失总量大于东翼,而西翼北端是区内水流失量最严重的区域,其水资源量流失的影响因素主要为气候、社会发展及人类活动等。   相似文献   

10.
Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2?10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.  相似文献   

11.
Water samples were collected from 18 natural springs within the West Fork of the Obey River watershed. Overton County, Tennessee, to determine if groundwater was adversely affected by runoff from abandoned surface coal mines Six springs were found to be affected severely and deemed unfit as a source of potable water Water quality of the remaining springs was essentially unaffected it appeared that proximity to surface mines, elevation at the outflow, and geology of the surrounding strata determined the quality of the groundwater The unit is jointly supported by Tennessee Technological University, the Tennessee Wildlife Resource Agency, and the US. Fish and Wildlife Service  相似文献   

12.
Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt% of WO3, 0.16-1.70 wt% of As2O3, 0.06-0.88 wt% of MoO3; whereas, the fine-grained uraninite retains 2.25-4.93 wt% of WO3, up to 5.76 wt% of MoO3, and 0.26-0.60 wt% of As2O3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO2+x and U4O9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U6+-phases.  相似文献   

13.
The common recommendation that recharge should be estimated from multiple methods is sound, but the inherent differences of the methods make it difficult to assess the accuracy of differing results. In this study, four methods for estimating groundwater recharge and two methods for estimating base flow (as a proxy for recharge) are compared at two hydrologic research sites in east-central Pennsylvania, USA. Results from the multiple methods all provided reasonable estimates of groundwater recharge that differed considerably. The estimates of mean annual recharge for the period 1994-2001 ranged from 22.9 to 35.7 cm—about 45% of the mean of all estimates. For individual years, recharge estimates from the multiple methods ranged from 30 to 42% of the mean value during the dry years and 64 to 76% of the mean value during wet years. Comparison of multiple methods was found to be useful for determining the range of plausible recharge rates and highlighting the uncertainty of the estimates.  相似文献   

14.
Isocon analysis of migmatization in the Front Range, Colorado, USA   总被引:2,自引:0,他引:2  
Isocon analysis has been applied to five sets of leucosome, mafic selvages and immediately adjacent mesosome in the migmatites from a 15-m outcrop in the Colorado Front Range. The results show: (i) mafic selvages formed from the adjacent mesosome by loss of felsic components and therefore the mesosomes are indeed palaeosomes or protoliths; (ii) the leucosomes did not form in a closed system from the palaeosome (in which case the material lost from the palaeosome during selvage formation would become the leucosome). The observed volumes and compositions of leucosomes require that the present leucosome must contain some material in addition to the felsic components lost from the selvages. The materials that must be added are leucotonalitic to granitic in composition, varying greatly in K/(Na + Ca) ratio. The trend in leucosome composition can be reproduced by assuming that a metasomatic exchange, KNa + Ca, modified originally leucotonalitic leucosomes to more K-rich compositions. These leucosomes most likely formed by injection of silicate melts accompanied, or followed, by metasomatism. The trend of leucosome compositions in this study reflects the general trend in the leucosome compositions which have been published from other areas, indicating that the proposed mechanism can be applicable to other regional migmatites.  相似文献   

15.
Dissolved rare earth elements (REEs) were determined in a four-year time series at the outlet of Loch Vale. The Loch Vale watershed is a seasonally snow-covered alpine/subalpine basin in Rocky Mountain National Park, USA. The time series was mainly distinguished by an annual early spring peak in the concentrations of all REEs. REE concentrations at this time were as much as 8-fold greater than at other times of the year. This annual peak was coincident with an early spring peak in dissolved organic carbon (DOC) which results from flushing of soils at the beginning of spring snow melting. The REE/DOC peak occurs as discharge starts to increase from wintertime lows but well before the spring peak in discharge. Speciation considerations suggest complexation of the REEs by DOC. The Ce anomaly also increases (i.e., is less fractionated) during the spring flush indicating that the most reducing (or least oxidizing) REE sources in the system are comparatively more important at that time. Mn data and the La/Yb ratio also support this. The behavior of REEs in the Loch Vale system has additionally been compared with metal and DOC behavior in other systems. Hydrologic and climatic differences can be important especially with regard to timing and duration of the spring flush peak. Damping of hydrologic events in the lower floodplain of major rivers may also partially result in the differences observed between Loch Vale and the lower Mississippi River. However, comparison with the Amazon River system additionally suggests that seasonal flooding of wetlands may be an important regulator of REE concentrations. Chemical differences are also important for these systems. This includes pH and suspended matter concentrations which affect the balance between adsorption and complexation. Additionally, the relative complexing ability of DOC in different systems is a factor needing further consideration.  相似文献   

16.
Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg−1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9–3.7 mg Hg kg−1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg−1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6–9.6 mg Hg kg−1 in Sulphur Creek; 0.5–61 mg Hg kg−1 in Davis Creek) to Cache Creek (0.1–0.4 mg Hg kg−1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2–55 mg Hg kg−1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg−1 measured in soils 90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.  相似文献   

17.
 Land subsidence due to groundwater withdrawal combined with a global sea level rise creates a serious environmental problem in the coastal region. Groundwater withdrawal results in fluid pressure change in the layers. The pressure change in the layers induces both elastic and inelastic land compaction. The elastic compaction can be recovered if the water level rises again and inelastic compaction becomes permanent. Groundwater response to barometric pressure change is used to estimate the elastic compaction in this study. The storativity, specific storage and other layer and hydrological information are used to estimate the inelastic compaction of the layers due to fluid withdrawal. The discussed methods are applied to estimate and predict the subsidence potentials resulting from overdrafting of the groundwater in the southern New Jersey. The estimated subsidence is about 2–3 cm near the location of monitoring wells in Atlantic, Camden, Cumberland and Cape May Counties over the past 20 years. If the current trend of water-level drop continues, the average subsidence in southern New Jersey in the vicinity of some monitoring wells will be about 3 cm in the next 20 years. The rise of global sea level is about 2 mm/year on average. Because of the very gentle slope in southern NJ, the combination of subsidence and sea level rise will translate into a potentially substantial amount of land loss in the coastal region in each 20 year period. This combination will also accelerate the coastal flooding frequency and the erosion rate of the New Jersey coastal plain, and pose a serious threat to the coastal economy. Received: 15 December 1997 · Accepted: 30 June 1998  相似文献   

18.
Spatial relations between land use and groundwater quality in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA were analyzed by the use of two spatial models. One model used a logit analysis and the other was based on geostatistics. The models were developed and compared on the basis of existing concentrations of nitrate as nitrogen in samples from 529 domestic wells. The models were applied to produce spatial probability maps that show areas in the watershed where concentrations of nitrate in groundwater are likely to exceed a predetermined management threshold value. Maps of the watershed generated by logistic regression and probability kriging analysis showing where the probability of nitrate concentrations would exceed 3 mg/L (>0.50) compared favorably. Logistic regression was less dependent on the spatial distribution of sampled wells, and identified an additional high probability area within the watershed that was missed by probability kriging. The spatial probability maps could be used to determine the natural or anthropogenic factors that best explain the occurrence and distribution of elevated concentrations of nitrate (or other constituents) in shallow groundwater. This information can be used by local land-use planners, ecologists, and managers to protect water supplies and identify land-use planning solutions and monitoring programs in vulnerable areas.  相似文献   

19.
Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.  相似文献   

20.
The valley floor of a 33.9 km2 watershed in western Colorado experienced gradual sedimentation from before ∼ 6765 to ∼ 500 cal yr BP followed by deep incision, renewed aggradation, and secondary incision. In contrast, at least four terraces and widespread cut-and-fill architecture in the valley floor downstream indicate multiple episodes of incision and deposition occurred during the same time interval. The upper valley fill history is atypical compared to other drainages in the Colorado Plateau.One possible reason for these differences is that a bedrock canyon between the upper and lower valley prevented headward erosion from reaching the upper valley fill. Another possibility is that widespread, sand-rich, clay-poor lithologies in the upper drainage limited surface runoff and generally favored alluviation, whereas more clay-rich lithologies in the lower drainage resulted in increased surface runoff and more frequent incision. Twenty-two dates from valley fill charcoal indicate an approximate forest fire recurrence interval of several hundred years, similar to that from other studies in juniper-piñon woodlands. Results show that closely spaced vertical sampling of alluvium in headwater valleys where linkages between hillslope processes and fluvial activity are relatively direct can provide insight about the role of fires in alluvial chronologies of semi-arid watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号