首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   

2.
Systematic measurements of the height of the summit crater rim on the active Karymskii Volcano showed that the variation of that parameter has been greater during its last eruption, lasting, with short intermissions, from January 1, 1996 until now (October 2007) compared with the earlier eruptions. The periodic increases in the height of Karymskii Volcano were due to explosion discharges of unconsolidated pyroclastic material, with most of this falling on the volcano’s cone. The increased seismicity of Karymskii Volcano intensified the slope movement processes, resulting in a comparatively flat area forming periodically on the crater rim; during separate, not very long, periods the height of the volcanic cone was increasing in discrete steps and at a greater rate. The periodic decrease in the height of Karymskii Volcano is due to compaction of pyroclastic material and, to a much greater extent, after violent explosions which expand the crater by removing its nearsummit circumference. The other contributing factor consists in sagging of the magma column due to partial emptying of the peripheral magma chamber, which makes the internal crater slope steeper, hence causes cone collapse and the cone lower. These occurrences are generally similar to the processes of crater and caldera generation described by previous investigators for other volcanoes of the world.  相似文献   

3.
Contemporaneous Plinian eruptions of rhyolite pumice from Glass Mountain and Little Glass Mountain during the last 1100 years B.P. were followed by extrusion of lava flows. 1.2 km of material was erupted and 10% by volume is tephra. All of the tephra deposits consist of very poorly sorted coarse ash and lapilli that are mostly pumice pyroclasts.Eruptive sequences, chemical composition and petrographic character of the rhyolites at Little Glass Mountain and Glass Mountain suggest that they came from the same magma body. The 1:9 ratio of tephra to lavas is typical of small silicic magma chambers. Eruption from a small chamber, 4–6 km deep, at vents 15 km apart is possible if magma rose along cone sheets with dips of 45–60°. The caldera rim and arcuate lines of vents near it may represent the surface expression of several concentric cone sheets.Pumice pyroclasts erupted at Glass Mountain and Little Glass Mountain may have formed in the following manner: (1) vesicle growth and coalescence beginning at 1–2 km depths; (2) elongation of the vesicles by flow within the cone sheets; (3) disruption of the vesiculated magma when it reached the surface by an expansion wave passing down through it; and (4) eruption of comminution products as pumice pyroclasts. Plinian activity at Little Glass Mountain and Glass Mountain continued until the volatile-rich top of the magma chamber had been depleted.  相似文献   

4.
White Island is a complex of two overlapping cones constructed of lava flows, agglomerates and unconsolidated and unsorted ash and tuff beds. Remnants of a welded-tuff flow have been found on the north-east flank of the volcano. Since the extrusion of the youngest lava flow the young cone has been breached to the south-east and deeply eroded. White Island lavas are porphyritic augite-hypersthene-labradorite andesites. One young lava flow is unusually rich in Na2O and contains groundmass sodian ferroaugite instead of the normal augite and hypersthene. The unusual groundmass features of this andesite are believed to be the result of contamination. Volcanic, plutonic and gneissic xenoliths have been found in the White Island lavas. Three new analyses of White Island andesites are given together with an electron microprobe analysis of a groundmass glass from one of the andesites. The White Island andesites are believed to have formed from the hybridisation of a primary mantle-derived andesitic magma with crustal material below the base of the Mesozoic New Zealand Geosyncline.  相似文献   

5.
In lieu of the rigorous elastodynamical approach, many problems in foundation dynamics may be solved quite accurately via simple cone models of the soil. Although these cone models are amenable to very simple analysis, they have not yet been widely accepted in engineering practice. The reservations against their use are possibly due to the fact that cones are based on non-rigorous strength-of-materials assumptions, they neglect large portions of the half-space, and cannot represent Rayleigh surface waves. These potential objections are investigated step by step and proven to be unfounded. It turns out that cone models indeed incorporate and provide valuable insight into all the salient features of rigorous solutions; the aspects omitted by cones are revealed to be of minor physical importance.  相似文献   

6.
The upper 40 m of Lake Nyos are retained by a weak natural dam which, if it were to fail, would not only devastate the area hit by the 1986 gas disaster but would also cause a serious flood to surge down the Katsina Ala into Nigeria. The age of the pyroclastic cone, of which the dam is the last remnant, is therefore of great practical importance to the people of the area. If the pyroclastic cone is only a few hundred years old, as some have suggested, then it is eroding away quickly and the dam must surely fail in the very near future. If, on the other hand, it is many thousands of years old, then there is less immediate cause for concern.The age of the pyroclastic cone can be constrained in three ways:(1) Two samples of basalt, one from the dam itself and one from a lava flow which post-dates the pyroclastic cone, have both yielded K–Ar ages in excess of 100,000 years.(2) Photographic evidence indicates that there has been no detectable change (>2 m) to the width of the dam since 1958. This constrains the average erosion rate and suggests that the pyroclastic cone is at least 4000 years old.(3) Cores from sediment deposited after the level of a small lake to the northeast of Lake Nyos was raised by a debris slide from the pyroclastic cone, contain no volcanic ash. A sample from the base of this sequence has yielded a radiocarbon age of 2700 years.The Lake Nyos dam must therefore be, at the very least, a few thousand years old and although its general stability must give serious cause for concern there is no reason to suspect that the rate at which it is currently eroding away is of itself sufficient to pose an immediate threat.  相似文献   

7.
Along the south coast of Arabia, between Aden and the southern entrance to the Red Sea, there are six central vent volcanoes of probable Pliocene age. All are characterised by the interstratification of basic and acidic extrusives, the formation of large central calderas at a late stage in the volcanic cycle and the subsequent infilling of these calderas with horizontal acidic ignimbrites and basic lavas. Lying 60 miles to the west of Aden and of particular interest is Jebel Khariz, the largest and best preserved of the six volcanic centres, covering a roughly circular area of about 100 square miles and rising to a height of 2,766 feet. The volcanic sequence of Jebel Khariz is broadly divisible into two suites: a) alkali-rich rhyolites and trachytes which occur as flows and pyroclastic horizons and form about 80 per cent of the volume of the cone, and b) effusives of basaltic composition that occur in the caldera, locally on the south-east and south-west flanks and in a small parasitic cone on the northern flank. The alkali-rich acidic suite includes lavas, ash-flow and ash-fall rocks as well as vent and flow breccias, Generally, all rocks of this suite have phenocrysts of anorthoclase, and may contain phenocrysts of fayalitic olivine, aegirine-augite, magnetite and/or quartz. The fine grained matrix is composed of the same minerals with skeletal riebeckite and, in some cases, cossyrite. The basaltic suite is characteristically porphyritic, the phenocrysts being of calcic plagioclase, clinopyroxene, olivine and magnetite in a fine-grained mesostasis of plagioclase, olivine, clinopyroxene and ore. The plagioclase, on initial investigation, appears to lie in the labradorite-bytownite range, the olivine is commonly replaced by iddingsite and the clinopyroxene is most commonly a pale mauve titanaugite. Near the centre of the volcanic pile, as exposed in the caldera wall, masses of rhyolitic composition can be seen to form over half of the volcanic sequence. These masses are markedly lenzoid in cross-section normal to the flow direction and display intricate flow folding; they are considered to have been extruded as viscous lava. Further from the volcanic centre, these acidic extrusives become less markedly lenzoid until in the distal areas of individual units, some 5 miles from the caldera, they have spread out to form sheet-like masses covering as much as 10 square miles to a uniform thickness rarely exceeding 25 feet. The presence of agglomeratic bases, hard compact central sections and less compact upper divisions, together with the ubiquitous presence of columnar jointing and occasional shard textures suggest that these distal parts of each extrusive unit have been formed by an ash-flow/ash-fall mechanism. It is postulated that the majority of the Jebel Khariz volcanic pile was formed by emission of acidic material, effusive in the central area, but deposited mainly by an ash-flow mechanism around the flanks of the cone. This could be due to either the synchronous eruption of viscous lava from the central vent with ash flow eruptions on the flanks; or, more probably, to the progression of an individual volcanic episode through an initial ash-flow phase followed by the effusion of viscous lava, all emanating from the central vent.  相似文献   

8.
Eruptions in shallow water typically produce cones of volcaniclastic material. In order to identify any systematic effects of water depth and other environmental parameters on cone morphology, we have measured the heights and widths of cones in multibeam echo-sounder data from a submarine ridge extending southeast from Pico Island, Azores. XRF analyses of dredged samples show that lavas here vary compositionally from alkali basalt to trachybasalt and trachyandesite. Cones in deeper water are generally steep-sided with upper flanks close to 30°, the dip of talus at the angle of repose. However, height/width ratios of cones vary more in shallow water (200?C400-m summit depth) with extreme values below 0.1; while some shallow-water cones are steep-sided as in deep water, others are much flatter. Three such cones lie on a bench at 300-m depth immediately east of Pico Island and have flank slopes of only 10?C20°. We speculate that exceptionally shallow cone slopes here were produced by forced spreading of the erupting columns on reaching the water?Cair density barrier.  相似文献   

9.
The energy cone concept has been adopted to describe some kinds of surge deposits. The energy cone parameters (height and slope) are evaluated through a regression technique which utilizes deposit thicknesses and the correspondent quotes and heights of the energy cone. The regression also allows to evaluate a coefficient of proportionality linking the deposit thickness to the distance between topographic surface and energy line for a given eruption. Moreover, if an accurate topography is available (in this case a reconstruction of a digitalized topography of the Phlegrean Fields and of the Vesuvius), the energy cone parameters, obtained by the backfitted technique, can be used to evaluate the order of magnitude of the deposit volumes.The hazard map for a surge localized at the Solfatara (Phlegraean Fields, Naples) has been computed. The values of the energy cone parameters and the volume have been assumed to be equal to those estimated with the regression technique applied to a past surge eruption in the same area.  相似文献   

10.
Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.  相似文献   

11.
The Pleistocene basanite-tephrite Rothenberg cone complex in the East Eifel was constructed by alternating dominantly Strombolian (S1–3) and dominantly phreatomagmatic (P1–3) phases of volcanism along a NNE-SSW linear vent system. Strombolian eruptions, from the central vent of the S1 scoria cone, and phreatomagmatic eruptions, from a vent on the southern margin of the cone, occurred simultaneously during the second phreatomagmatic phase (P2). The P2 deposits are a complex sequence in which Strombolian fallout ejecta is intimately admixed with phreatomagmatic fallout and pyroclastic surge material. Every bed contains at least trace amounts of ejecta from both sources but, at every site, an alternation of Strombolian-dominant and phreatomagmatic-dominant units is recorded. Each bed also shows marked lateral changes with a progressive northward increase in the proportion of Strombolian material. The two eruptive styles produced morphologically distinct clast populations often with widely separated (5–7 φ) grain size modes. The phreatomagmatic component of the P2 deposits is inferred to be the result of shallow interaction of external water and cool, partially degassed magma which reached the surface at a time when the magma column was retreating from the northern Strombolian central vent.The Rothenberg deposits illustrate the complexity and sensitivity of controls on Strombolian and associated phreatomagmatic volcanism, and the shallow depth of fragmentation during such eruptions. During such shallow eruptions minor, ephemeral and localised variations in the rate of rise and discharge of magma, and vent geometry and hydrology significantly influence the magma:water ratio and hence eruptive style.  相似文献   

12.
North Menan Butte is a tuff cone near Idaho Falls, Idaho. It is a result of the eruption of basaltic magma through shallow water-saturated river alluvium of the Snake River. The cone is characterized by primary fractures that can be classified into four groups on the basis of their physical properties and their orientations relative to the symmetry elements of the cone. Type I fractures are short, closely spaced and usually confined to individual beds. They strike approximately at right angles to cone radii and always dip toward the rim of the tuff cone. Bed segments separated by these fractures have undergone rotation, resulting in normal displacements. Type II fractures have similar attitudes but are more continuous, less frequent, and show no shear displacement. Type III fractures also strike at right angles to cone radii, but they dip away from the cone rim. They cut across several beds and reveal inconsistent senses of shear displacement. Type IV fractures are radial, steeply dipping and tend to be the most continuous of all fracture types. Type I fractures were the earliest to develop; age relationships otherwise are uncertain. Examples of all four types of fractures are exposed on the inner and outer eroded slopes of the cone.Evidence from the cone indicates that the fractures developed in an unconsolidated aggregate of tuff with low cohesion; therefore, analysis of fracture genesis should be constrained by principles of soil mechanics. Type I fractures originated as tension fractures related to early downslope mass movement. Later movement on Type I fractures accompanied the development of Type III shear fractures and possible bedding plane displacements, all caused by overloading the crest of the cone by late-stage eruptive products. The origin of Type II fractures is unknown; shrinkage due to desiccation or large-scale creep are possible explanations. The radial Type IV fractures may be a consequence of desiccation shrinkage or possibly of subcone processes such as magma doming or radial hydraulic fracturing.  相似文献   

13.
The Ohakune Craters form one of several parasitic centres surrounding Ruapehu volcano, at the southern end of the Taupo Volcanic Zone. An inner scoria cone and an outer, probably older, tuff ring are the principal structures in a nested cluster of four vents.The scoria cone consists of alternating lava flows and coarse, welded and unwelded, strombolian block and bomb beds. The strombolian beds consist of principally two discrete types of essential clast, vesicular bombs and dense angular blocks. Rare finer-grained beds are unusually block-rich. The tuff ring consists of alternating strombolian and phreatomagmatic units. Strombolian beds have similar grain size characteristics to scoria cone units, but contain more highly vesicular unoxidised bombs and few blocks. Phreatomagmatic deposits, which contain clasts with variable degrees of palagonitisation, consist of less well-sorted airfall deposits and very poorly sorted, crystal-rich pyroclastic surge deposits.Disruption by expanding magmatic gas bubbles was a major but relatively constant influence on both strombolian and phreatomagmatic eruptions at Ohakune. Instead, the nature of deposits was principally controlled by two other variables, vent geometry and the relative influence of external water during volcanism. During tuff-ring construction, magma is considered to have risen rapidly to the surface, and to have been ejected without sufficient residence time in the vent for non-explosive degassing. Availability of external water principally governed the eruption mechanism and hence the nature of the deposits. Essentials clasts of the scoria cone are, by comparison, dense, degassed and oxidised. It is suggested that a change in vent geometry, possibly the construction of the tuff ring itself, permitted lava ponding and degassing during scoria cone growth. During strombolian eruptions, magma remaining in the vent probably became depleted in gas, leading to the formation of an inert zone, or crust, above actively degassing magma. Subsequent explosions had therefore to disrupt both this passive crust and underlying, vesiculating magma “driving” the eruption. Cycles of strombolian eruption are thought to have stopped when the thickness of the inert crust precluded explosive eruption and only recommenced when some of this material was removed, either as a lava flow or during phreatomagmatic explosions when external water entered the vent. Such explosions probably formed the unusually fine-grained and block-rich beds in the strombolian sequence.The Ohakune deposits are an excellent example of the products of explosive eruption of fluid, gas-rich basic magma vesiculating under very near-surface conditions. A complex interplay of rate of magma rise, rate and depth of formation of gas bubbles, vent geometry, abundance of shallow external water, wind velocity and accumulation rate of ejecta determines the nature of deposits of such eruptions.  相似文献   

14.
Postglacial Icelandic shield volcanoes were formed in monogenetic eruptions mainly in the early Holocene epoch. Shield volcanoes vary in their cone morphology and in the areal extent of the associated lava flows. This paper presents the results of a study of 24 olivine tholeiite and 7 picrite basaltic shield volcanoes. For the olivine tholeiitic shields the median slope is 2.7°, the median height 60 m, the median diameter 3.6 km, the median aspect ratio (height against diameter) 0.019, and the median cone volume 0.2 km3. The picritic shield volcanoes are considerably steeper and smaller. A shield-volcano cone forms from successive lava lake overflows which are of shelly-type pahoehoe. A widespread apron surrounding the cone forms from tube-fed P-type pahoehoe. The slopes of the cones have (a) a planar or slightly convex form, (b) a concave form, or (c) a convex-concave form. A successive stage of a shield volcano is determined on the basis of cone morphology and lava assemblages. A shield-producing eruption has alternating episodes of lava lake overflows and tube-fed delivery to the distal parts of the flow field. In the late stages of eruption, the cone volume increases in response to the increased amount of rootless outpouring on the cone flanks. Normally, only a small percentage of the total erupted volume of a shield volcano, sometimes as little as 1–3%, is in the shield volcano cone itself, the main volume being in the apron of the shield.  相似文献   

15.
A large number of uniform cone‐shaped dissolution pipes has been observed and studied in Quaternary coastal calcareous arenites in Apulia and Sardinia (Italy) and Tunisia. These cylindrical tubes have a mean diameter of 52·8 cm and are up to 970 cm deep (mean depth for sediment‐free pipes is 1·38 m). They generally have smooth walls along their length, are perfectly vertical and taper out towards their bottoms. Their development is not influenced by bedding nor fractures. Sometimes their walls are coated by a calcrete crust. Their morphology has been studied in detail and their relationships with the surrounding rocks and with the environment have been analysed. The perfectly vertical development is a clear evidence of their genesis controlled by gravity. The depth of the dissolution pipes can be described by an exponential distribution law (the Milanovic distribution), strongly suggesting they developed by a diffusion mechanism from the surface vertically downward. We believe dissolution pipes preferentially form in a covered karst setting. Local patches of soil and vegetation cause infiltration water to be enriched in carbon dioxide enhancing dissolution of carbonate cement and local small‐scale subsidence. This process causes the formation of a depression cone that guides infiltrating waters towards these spots giving rise to the downward growth of gravity‐controlled dissolution pipes. A change of climate from wetter phases to drier and hotter ones causes the formation of a calcrete lining, fossilizing the pipes. When the pipes become exposed to surface agents by erosion of the sediment cover or are laterally breached the loose quartz sand filling them may be transported elsewhere. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Stratigraphic reconstruction of the complete sequence of deposits that formed the Fossa cone of Vulcano has distinguished four principal eruptive cycles: Punte Nere, Palizzi, Commenda, and Pietre Cotte. At least three additional eruptive cycles, one of which ends with the Campo Sportivo lava, occur between deposits of the Punte Nere and Palizzi cycles. However, exposure is inadequate for their characterization. The assignment of the modern deposits that follow the Pietre Cotte lava is uncertain.Deposits of each cycle follow a similar stochastic pattern that is controlled by a decrease in the effect of water/melt interaction. The normal sequence of pyroclastic products for each cycle starts with wet-surge beds, followed by dry-surge horizons, fall deposits, and finally lava flows. Absolute age determinations have been made on each cycle-ending lava flow.Wet-surge deposits normally occur near the crater rim, whereas dry-surge deposits are more widespread, reaching the surrounding caldera wall in many places. Thick fall deposits are confined to a zone extending about 800 m from the crater rim. Lava flows normally reach the base of the cone. The greatest hazard at Fossa is related to surge eruptions. The thickness of dry-surge deposits on the flanks of the cone increases away from the crater, but they pinch out toward the source near the crater rim. SEM analysis of the surface textures of juvenile glass clasts from dry-surge deposits confirms that the dominant control on the eruptive mechanism is water/melt interaction. Only slight modifications are induced on grain surfaces during transport. Particles from the Palizzi dry-surge beds lack surface textures characteristic of fall pyroclasts which suggests that ballistic fragments were not incorporated into the dense portion of the turbulent surge cloud. A quantitative analysis of the dispersal of products from the Palizzi cycle allowed creation of a computer-generated map for this eruption.Paper presented at the IUGG Inter-disciplinary Symposium on Volcanic Hazard, Hamburg, August 1983.  相似文献   

17.
On August 1, 1952, a new volcano named Bárcena was born on Isla San Benedicto, which is located about 300 nautical miles off the west coast of Mexico. A pyroclastic cone nearly 1100 feet above sea level was formed by August 2. By mid-September cone formation had ceased and a small lava plug capped the magma conduit in the crater. After a period of quiescence from mid-September until early November activity resumed and blocky, soda trachyte lava formed two domes in Bárcena crater during November and early December. On December 8 lava flowed through the base of the volcano and formed a delta nearly one-half mile out to sea by the end of February, 1953. All activity, except solfataric steaming, stopped by this date. Volcanic density flows («nuées ardentes ») descended the cone during the period of cone formation. As the expulsion of ash and steam decreased in early September, 1952, the exterior of the cone is believed to have been furrowed by these avalanches. Volcán Bárcena has an index of explosiveness of about 90 per cent, the highest of any known oceanic volcano in the eastern Pacific Ocean. Calculations indicate that about 10,500 million cubic feet (300 million cubic meters) of tephra and lava were erupted during the life of Bárcena.  相似文献   

18.
19.
The volcanic island of Milos, Greece, comprises an Upper Pliocene –Pleistocene, thick (up to 700 m), compositionally and texturally diverse succession of calc-alkaline, volcanic, and sedimentary rocks that record a transition from a relatively shallow but dominantly below-wave-base submarine setting to a subaerial one. The volcanic activity began at 2.66±0.07 Ma and has been more or less continuous since then. Subaerial emergence probably occurred at 1.44±0.08 Ma, in response to a combination of volcanic constructional processes and fault-controlled volcano-tectonic uplift. The architecture of the dominantly felsic-intermediate volcanic succession reflects contrasts in eruption style, proximity to source, depositional environment and emplacement processes. The juxtaposition of submarine and subaerial facies indicates that for part of the volcanic history, below-wave base to above-wave base, and shoaling to subaerial depositional environments coexisted in most areas. The volcanic facies architecture comprises interfingering proximal (near vent), medial and distal facies associations related to five main volcano types: (1) submarine felsic cryptodome-pumice cone volcanoes; (2) submarine dacitic and andesitic lava domes; (3) submarine-to-subaerial scoria cones; (4) submarine-to-subaerial dacitic and andesitic lava domes and (5) subaerial lava-pumice cone volcanoes. The volcanic facies are interbedded with a sedimentary facies association comprising sandstone and/or fossiliferous mudstone mainly derived from erosion of pre-existing volcanic deposits. The main facies associations are interpreted to have conformable, disconformable, and interfingering contacts, and there are no mappable angular unconformities or disconformities within the volcanic succession.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
千伏级锥束CT在放射治疗、外科手术、口腔疾病诊断等领域都有广泛的应用。然而,频繁地使用千伏级锥束CT,也会给患者甚至医生带来额外的射线辐射损伤。相关统计结果表明,X射线辐射能够诱发癌症,特别是儿童和女性对射线辐射异常敏感。因此,合理使用锥束CT,同时降低锥束CT辐射剂量,对于降低射线辐射并发症风险显得非常重要。本文总结了降低锥束CT辐射剂量的常用措施,包括降低管电流、局部扫描、脉冲扫描、短扫描以及少投影扫描。辐射剂量的降低有可能会在重建图像中引入噪声、伪影。针对特定的问题,本文也提出了对应的补偿方法。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号