首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

2.
Pollen and macrofossil analyses of a core spanning 26,000 yr from Davis Lake reveal late Pleistocene and Holocene vegetational patterns in the Puget Lowland. The core ranges lithologically from a basal inorganic clay to a detritus gyttja to an upper fibrous peat and includes eight tephra units. The late Pleistocene pollen sequence records two intervals of tundra-parkland vegetation. The earlier of these has high percentages of Picea, Gramineae, and Artemisia pollen and represents the vegetation during the Evans Creek Stade (Fraser Glaciation) (ca. 25,000–17,000 yr B.P.). The later parkland interval is dominated by Picea, Tsuga mertensiana, and Gramineae. It corresponds to the maximum ice advance in the Puget Lowland during the Vashon Stade (Fraser Glaciation) (ca. 14,000 yr B.P.). An increase in Pinus ontorta pollen between the two tundra-parkland intervals suggests a temporary rise in treeline during an unnamed interstade. After 13,500 yr B.P., a mixed woodland of subalpine and lowland conifers grew at Davis Lake during a period of rapid climatic amelioration. In the early Holocene, the prolonged expansion of Pseudotsuga and Alnus woodland suggests dry, temperate conditions similar to those of present rainshadow sites in the Puget Lowland. More-mesic forests of Tsuga eterophylla, Thuja plicata, and Pseudotsuga, similar to present lowland vegetation, appeared in the late Holocene (ca. 5500 yr B.P.).  相似文献   

3.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

4.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

5.
Phytolith data from Poyang Lake, southern China, indicate that significant natural and human‐induced vegetational changes have occurred in the middle Yangtze River valley, the likely hearth of rice (Oryza sativa L.) domestication, during the Late Pleistocene and Holocene periods. During the Late Pleistocene (from >13,500 to ca. 10,500 yr B.P.) the climate was cooler and drier than today's. Oryza appears to have been a natural component of the vegetation at that time, but may not have been well adapted to the glacial climatic conditions. The early Holocene climate may have been wetter and more markedly seasonal that at present, and wild Oryza species may have been distributed further north than seen today. By 4000 yr B.P., rice agriculture appears to have been well developed in the middle Yangtze River Valley. Environmental factors such as atmospheric CO2 concentrations and the seasonality of precipitation and temperature in addition to overall cooler and drier Pleistocene climates may have significantly influenced human exploitation of Oryza during the Late Pleistocene and early Holocene in southern China. © 2000 John Wiley & Sons, Inc.  相似文献   

6.
A 13,100-year-long high-resolution pollen and charcoal record from Foy Lake in western Montana is compared with a network of vegetation and fire-history records from the Northern Rocky Mountains. New and previously published results were stratified by elevation into upper and lower and tree line to explore the role of Holocene climate variability on vegetation dynamics and fire regimes. During the cooler and drier Lateglacial period, ca 13,000 cal yr BP, sparsely vegetated Picea parkland occupied Foy Lake as well as other low- and high-elevations with a low incidence of fire. During the warmer early Holocene, from ca 11,000–7500 cal yr BP, low-elevation records, including Foy, indicate significant restructuring of regional vegetation as Lateglacial Picea parkland gave way to a mixed forest of Pinus-Pseudotsuga-Larix. In contrast, upper tree line sites (ca >2000 m) supported Pinus albicaulis and/or P. monticola-Abies-Picea forests in the Lateglacial and early Holocene. Regionally, biomass burning gradually increased from the Lateglacial times through the middle Holocene. However, upper tree line fire-history records suggest several climate-driven decreases in biomass burning centered at 11,500, 8500, 4000, 1600 and 500 cal yr BP. In contrast, lower tree line records generally experienced a gradual increase in biomass burning from the Lateglacial to ca 8000 cal yr BP, then reduced fire activity until a late Holocene maximum at 1800 cal yr BP, as structurally complex mesophytic forests at Foy Lake and other sites supported mixed-severity fire regimes. During the last two millennia, fire activity decreased at low elevations as modern forests developed and the climate became cooler and wetter than before. Embedded within these long-term trends are high amplitude variations in both vegetation dynamics and biomass burning. High-elevation paleoecological reconstructions tend to be more responsive to long-term changes in climate forcing related to growing-season temperature. Low-elevation records in the NRM have responded more abruptly to changes in effective precipitation during the late Holocene. Prolonged droughts, including those between 1200 and 800 cal yr BP, and climatic cooling during the last few centuries continues to influence vegetation and fire regimes at low elevation while increasing temperature has increased biomass burning in high elevations.  相似文献   

7.
Recent investigations of a limestone solution cave on the Queen Charlotte Islands (Haida Gwaii) have yielded skeletal remains of fauna including late Pleistocene and early Holocene bears, one specimen of which dates to ca. 14,400 14C yr B.P. This new fossil evidence sheds light on early postglacial environmental conditions in this archipelago, with implications for the timing of early human migration into the Americas.  相似文献   

8.
In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high‐resolution pollen record from El Tiro Pass (2810 m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127 cm long core spanning the last ca. 21 000 cal. yr BP, indicate that grass‐paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass‐paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11 200 to 8900 cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300 cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300 cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000 cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A paleoclimatic reconstruction for the past 35,000 years for northern Oman is based on an unusual approach using travertines and fracture calcites associated with hyperalkaline springs. High-pH groundwaters (pH up to 11.9) discharge from the mantle sequence of the Oman Ophiolite as the product of modern, low-temperature serpentinization. Under arid climatic conditions, hyperalkaline discharge occurs at the surface. Uptake of atmospheric CO2 precipitates characteristic laminated travertines, accompanied by strong kinetic depletion of 13C and 18O. Pluvial climates supporting a shallow bicarbonate-groundwater flow system and vegetation are recorded by fracture calcites with equilibrium stable isotope contents and calcite-replaced roots and stems. All such carbonates have modern initial 14C contents, allowing radiocarbon dating and paleoclimatic reconstruction for the late Pleistocene and Holocene. Our reconstruction shows a dominantly wet late Pleistocene up to 19,000 yr B.P., when a phase of climatic deterioration began, leading to a period of hyperaridity which dominated from ca. 16,300 to 13,000 yr B.P. The early Holocene pluvial occurred from 12,500 to ca. 6500 yr B.P. and was followed by renewed climatic deterioration and the current phase of hyperaridity. Comparison of this paleoclimatic reconstruction with that for lacustrine deposits from the A'Rub al Khali of central Saudi Arabia and the summer insolation-driven monsoon record of east Africa and the Arabian Sea is remarkably good.  相似文献   

10.
Pollen data from two sites provide information on the postglacial vegetation and climate history of the Cascade Range. Indian Prairie in the western Cascade Range was colonized by subalpine forests of Pinus, Picea, and Tsuga and open meadows prior to ca. 12,400 14C yr B.P. The treeline lay 500 to 1000 m below its modern elevation and conditions were cooler than at present. From ca. 12,400 to ca. 9950 14C yr B.P. Abies became important and the forest resembled that presently found at middle elevations in the western Cascade Range. The pollen record implies a rise in treeline and warmer conditions than before. From ca. 10,000 to 4000-4500 14C yr B.P., conditions that were warmer and effectively drier than today led to the establishment of a closed forest composed of Pseudotsuga , Abies, and, at lower elevations, Quercus and Corylus . During this period, Gold Lake Bog in the High Cascades was surrounded by closed forest of Pinus and Abies. The early-Holocene pollen assemblages at both Indian Prairie and Gold Lake Bog lack modern analogues, and it is likely that greater-than-present summer radiation fostered unique climatic conditions and vegetation associations at middle and high elevations. In the late Holocene, beginning ca. 4000-4500 14C yr B.P., cooler and more humid conditions prevailed and the modern vegetation was established. A comparison of these sites with others in the Pacific Northwest suggests that major patterns of vegetational change at individual sites were a response to large-scale changes in the climate system that affected the entire region.  相似文献   

11.
A Late‐glacial–Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia–Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae‐Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5–11 kyr BP). The local Late Pleistocene–Holocene non‐forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A ‘Phyllocladus bulge’ prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early–middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The environmental history of the Northern Rocky Mountains was reconstructed using lake sediments from Burnt Knob Lake, Idaho, and comparing the results with those from other previously published sites in the region to understand how vegetation and fire regimes responded to large-scale climate changes during the Holocene. Vegetation reconstructions indicate parkland or alpine meadow at the end of the glacial period indicating cold-dry conditions. From 14,000 to 12,000 cal yr B.P., abundant Pinus pollen suggests warmer, moister conditions than the previous period. Most sites record the development of a forest with Pseudotsuga ca. 9500 cal yr B.P. indicating warm dry climate coincident with the summer insolation maximum. As the amplification of the seasonal cycle of insolation waned during the middle Holocene, Pseudotsuga was replaced by Pinus and Abies suggesting cool, moist conditions. The fire reconstructions show less synchroneity. In general, the sites west of the continental divide display a fire-frequency maximum around 12,000–8000 cal yr B.P., which coincides with the interval of high summer insolation and stronger-than-present subtropical high. The sites on the east side of the continental divide have the highest fire frequency ca. 6000–3500 cal yr B.P. and may be responding to a decrease in summer precipitation as monsoonal circulation weakened in the middle and late Holocene. This study demonstrated that the fire frequency of the last two decades does not exceed the historical range of variability in that periods of even higher-than-present fire frequency occurred in the past.  相似文献   

13.
We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.  相似文献   

14.
Controlled by a local base level of downfaulted Edwards and Comanche Peak limestone, and aided by landsliding in Glen Rose marl, the Sabinal River and its tributaries have developed a large valley in the Edwards Plateau. Extensive soil-covered pediments that cut Glen Rose bedrock and Pleistocene terrace gravels are present along each side of the valley. Six alluvial deposits of late Pleistocene and Holocene age were recognized in the upper Sabinal River valley. The Holocene series is represented by three deposits. The oldest of these exhibits a Stage II calcic horizon and appears to have been deposited before ca. 5000 yr B.P. The Pleistocene deposits have a calcrete zone (calcic Stage IV and III horizon) in the upper 3-4 m. The Holocene alluviums, locally beveled by stream action, parallel the river's course and contain Archaic and younger artifacts, which in central Texas range in age from about 8000-350 yr B.P. One of the Holocene deposits (Q2) is correlated with the Georgetown and Fort Hood alluviums of the Cowhouse Creek at Fort Hood, which range in age from 11,000 yr B.P. to 5200 yr B.P., with the Wilson-Leonard terrace site in the Lampasas Cut Plain that ranges from about 11,000 to 5000 yr B.P., and with Unit E of Blum and Valastro (1989) in the Pedernales River valley, ranging from 10,550 to 7150 yr B.P. Modern climate in the valley is drought-prone, and fluctuates from semiarid to dry subhumid. Paleoclimate has ranged from much drier during the Middle Holocene to much cooler and wetter during the Late Pleistocene.  相似文献   

15.
Pollen evidence from Lake Shayema, Mianning County, was obtained to examine postglacial vegetation and climatic change in southwestern Sichuan, China. The sclerophyllous character of the region's warm temperate vegetation today is a reflection of extreme drought in spring before the onset of the Asian monsoons. The pollen record displays several changes in the vegetation over the last 11,000 yr. From 11,000 to 9100 yr B.P., cold-tolerant species, such as Abies , Betula, and deciduous oaks, dominated the vegetation. Between 9100 and 7800 yr B.P., the abundance of deciduous oaks decreased and evergreen oaks increased, as did Tsuga and mesic deciduous species. This change suggests a warming climate with increased precipitation. From 7800 to 4000 yr B.P., sclerophyllous species increased at the expense of mesic deciduous species, an indication that precipitation was becoming more seasonal. Except for increased disturbance starting ca. 1000 yr B.P., the predominance of sclerophyllous vegetation continued until today. The pollen results are compatible with proposed global circulation hypotheses of a strengthened monsoon system during the early to mid Holocene.  相似文献   

16.
At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.  相似文献   

17.
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.  相似文献   

18.
A 12 000 to 4000 yr BP pollen and tephra-bearing profile from Auckland, New Zealand, provides insights into the vegetation history and evidence for early Holocene volcanic activity in this area centred on the Mount Wellington basaltic volcano. Possibly 500 yr separated initial scoriaceous ash deposition (ca. 9500 yr ago) and subsequent major lava flows (ca. 9000 yr ago) from Mount Wellington. The local vegelation, topography, and drainage patterns were substantially modified during this time, and damming by the lava flows resulted in the formation of Lake Waiatarua in a shallow valley head ca. 9000 yr ago. Diatom evidence indicates that this lake was initially deep (> 5 m) but was shallowing around 4000 yr ago. In contrast to the Mount Wellington eruptions, tephra deposition resulting from distant rhyolitic volcanic activity of the central North Island and Mayor Island has had little effect on the Auckland vegetation during this time interval (12 000–4000 yr ago). Between ca. 12 000 and 10 000 yr ago, conifer-angiosperm forest was the predominant vegetation cover on Auckland Isthmus, but during the early Holocene, forest dominated by Metrosideros expanded, probably on to fresh volcanic surfaces resulting from the Mount Wellington eruptions. At this time, swamp forest communities developed in Waiatarua valley basin, and included species indicative of moist, mild, relatively frost-free climates. Some taxa show histories consistent with other records from the northern New Zealand region, including the rise of Ascarina lucida ca. 11 000 to 9000 yr ago, and its subsequent decline, and the expansion of Agathis australis (kauri) forest communities from ca. 6000 yr ago. Taken together the history of local and regional vegetation points to a mild, moist and weakly seasonal early Holocene climate, which subsequently became drier with greater seasonal temperature extremes.  相似文献   

19.
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

20.
Pollen in Quaternary deposits from the subtropical Hanjiang Delta records three major phases in the local vegetation and climate history during the last 55,000 yr: (1) a prevalent cool-to-temperate and humid climate at ca. 24,000 14C yr B.P. is indicated by abundant pollen of temperate trees including conifers; (2) between 20,000 and 15,000 14C yr B.P., a cold, dry environment was associated with low sea level during the last glaciation, leading to subaerial exposure, weathering, and interruption of sedimentation, as well as departure from the region of Dacrydium and Sonneratia; (3) a short-term expansion of grassland at ca. 10,300 14C yr B.P. reduced the predominant Lauraceae-Fagaceae evergreen forest, possibly corresponding to the Younger Dryas cooling. The combined data indicate a maximum sea-level rise in the mid-Holocene (7500–4000 14C yr B.P.) and a marine influence in the late Pleistocene at 45,000–20,000 14C yr B.P. The Holocene warming, however, did not bring back moisture-sensitive taxa, indicating high seasonal aridity probably caused by renewed monsoon conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号